
Если вы видите что-то необычное, просто сообщите мне.

Welcome to the conclusion of our series on Haskell data types! We've gone over a lot of things in
this series that demonstrated Haskell's simplicity. We compared Haskell against other languages
where we saw more cumbersome syntax. In this final part, we'll see something a bit more
complicated though. We'll do a quick exploration of the idea of type families. We'll start by tracing
the evolution of some related type ideas, and then look at a quick example.

This is a beginner series, but the material in this final part will be a bit more complicated. If the
code examples are confusing, it'll help to read our Monads Series first! But if you're just starting
out, we've got plenty of other resources to help you out! Take a look at our Getting Started
Checklist or our Liftoff Series!

You can follow along with these code examples in our Github Repository! Just take a look at the
Type Families module!

In this series so far, we've seen a couple different ways to "plug in a hole", as far as a type or class
definition goes. In the third part of this series we explored parametric types. These have type
variables as part of their definition. We can view each type variable as a hole we need to fill in with
another type.

Then in the fourth part, we explored the concept of typeclasses. For any instance of a typeclass,
we're plugging in the holes of the function definitions of that class. We fill in each hole with an
implementation of the function for that particular type.

Type Families in Haskell

DIFFERENT KINDS OF TYPE
HOLES

In this last part, we're going to combine these ideas to get type families! A type family is an
enhanced class where one or more of the "holes" we fill in is actually a type! This allows us to
associate different types with each other. The result is that we can write special kinds of
polymorphic functions.

First, here's a contrived example to use through this article. We want to have a logging typeclass.
We'll call it MyLogger. We'll have two main functions in this class. We should be able to get all the
messages in the log in chronological order. Then we should be able to log a new message, which
will naturally affect the logger type. A first pass at this class might look like this:

We can make a slight change that would use the State monad instead of passing the logger as an
argument:

But this class is deficient in an important way. We won't be able to have any effects associated
with our logging. What if we want to save the log message in a database, send it over network
connection, or log it to the console? We could allow this, while still keeping prevMessages pure like
so:

Now our logString function can use arbitrary effects. But this has the obvious downside that it
forces us to introduce the IO monad places where we don't need it. If our logger doesn't need IO,
we don't want it. So what do we do?

A BASIC LOGGER

class MyLogger logger where
 prevMessages :: logger -> [String]
 logString :: String -> logger -> logger

class MyLogger logger where
 prevMessages :: logger -> [String]
 logString :: String -> State logger ()

class MyLogger logger where
 prevMessages :: logger -> [String]
 logString :: String -> StateT logger IO ()

One place we can start is to make the logger itself the monad! Then getting the previous messages
will be a simple matter of turning that function into an effect. And then we won't necessarily be
bound to the State monad:

But now suppose we want to give our user the flexibility to use something besides a list of strings
as the "state" of the message system. Maybe they also want timestamps, or log file information.
We want to tie this type to the monad itself, so we can use it in different function signatures. That
is, we want to fill in a "hole" in our class instance with a particular type. How do we do this?

One answer is to make our class a type family. We do this with the type keyword in the class
defintion. First, we need a few language pragmas to allow this:

Now we'll make a type within our class that refers to the state we'll use. We have to describe the
"kind" of the type with the definition. Since our state is an ordinary type that doesn't take a
parameter, its kind is *. Here's what our definition looks like:

USING A MONAD

class (Monad m) => MyLoggerMonad m where
 prevMessages :: m [String]
 logString :: String -> m ()

TYPE FAMILY BASICS

{-# LANGUAGE AllowAmbiguousTypes #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE TypeFamilies #-}

class (Monad m) => MyLoggerMonad m where
 type LogState m :: *
 retrieveState :: m (LogState m)
 logString :: String -> m ()

Instead of returning a list of strings all the time, retrieveState will produce whatever type we assign
as the LogState. Since our state is more general now, we'll call the function retrieveState instead of
prevMessages.

Now that we have our class, let's make a monad that implements it! Our first example will be
simple, wrapping a list of strings with State, without using IO:

We'll assign [String] to be the stateful type. Then retrieving that is as simple as using get, and
adding a message will push it at the head of the list.

A function using this monad could all the logString function, and retrieve its state:

To run this monadic action, we'd have to get back to the basics of using the State monad. (Again,
our Monads series explains those details in more depth). But at the end of the day we can produce
a pure list of strings.

A SIMPLE INSTANCE

newtype ListWrapper a = ListWrapper (State [String] a)
 deriving (Functor, Applicative, Monad)

instance MyLoggerMonad ListWrapper where
 type LogState ListWrapper = [String]
 retrieveState = ListWrapper get
 logString msg = ListWrapper $ do
 prev <- get
 put (msg : prev)

produceStringsList :: ListWrapper [String]
produceStringsList = do
 logString "Hello"
 logString "World"
 retrieveState

listWrapper :: [String]
listWrapper = runListWrapper produceStringsList

Now we can make a version a couple different versions of this logger that actually use IO. In our
first example, we'll use a map instead of a list as our "state". Each new message will have a
timestamp associated with it, and this will require IO. When we log a string, we'll get the current
time and store the string in the map with that time.

And then we can make another version of this that logs the messages in a file. The monad will use
ReaderT to track the name of the file, and it will open it whenever it needs to log a message or
produce more output:

runListWrapper :: ListWrapper a -> a
runListWrapper (ListWrapper action) = evalState action []

USING IO IN OUR INSTANCES

type TimeMsgMap = M.Map UTCTime String
newtype StampedMessages a = StampedMessages (StateT TimeMsgMap IO a)
 deriving (Functor, Applicative, Monad)

instance MyLoggerMonad StampedMessages where
 type LogState StampedMessages = TimeMsgMap
 retrieveState = StampedMessages get
 logString msg = StampedMessages $ do
 ts <- lift getCurrentTime
 lift (print ts)
 prev <- get
 put (M.insert ts msg prev)

newtype FileLogger a = FileLogger (ReaderT FilePath IO a)
 deriving (Functor, Applicative, Monad)

instance MyLoggerMonad FileLogger where
 type LogState FileLogger = [String]
 retrieveState = FileLogger $ do
 fp <- ask
 (reverse . lines) <$> lift (readFile fp)
 logString msg = FileLogger $ do

We can also use the IO to print our message to the console while we're at it.

#USING OUR LOGGER By defining our class like this, we can now write a polymorphic function that
will work with any of our loggers! Once we apply the constraint in our signature, we can use the
LogState as another type in our signature!

This is awesome because our code is now abstracted away from the needed effects. We could call
this with or without the IO monad.

When it comes to effects, Haskell's type system often makes it more difficult to use than other
languages. Arbitrary effects can happen anywhere in Java or Python. Because of this, we don't have
to worry about matching up effects with types.

But let's not forget about the benefits of Haskell's effect system! For all parts of our code, we know
what effects we can use. This lets us determine at compile time where certain problems can arise.

 lift (putStrLn msg) -- Print message
 fp <- ask -- Retrieve log file
 lift (appendFile fp (msg ++ "\n")) -- Add new message

useAnyLogger :: (MyLoggerMonad m) => m (LogState m)
useAnyLogger = do
 logString "Hello"
 logString "World"
 logString "!"
 retrieveState

runListGeneric :: [String]
runListGeneric = runListWrapper useAnyLogger

runStampGeneric :: IO TimeMsgMap
runStampGeneric = runStampWrapper useAnyLogger

COMPARING TO OTHER
LANGUAGES

Type families give us the best of both worlds! They allow us to write polymorphic code that can
work either with or without IO effects. This is really cool, especially whenever you want to have
different setups for testing and development.

Haskell is a clear winner when it comes to associating types with one another and applying
compile-time constraints on these relationships. In C++ it is possible to get this functionality, but
the syntax is very painful and out of the ordinary. In Haskell, type families are a complex topic to
understand. But once you've wrapped your ahead around the concept, the syntax is actually fairly
intuitive. It springs naturally from the existing mechanisms for typeclasses, and this is a big plus.

That's all for our series on Haskell's data system! We've now seen a wide range of elements, from
the simple to the complex. We compared Haskell against other languages. Again, the simplicity
with which one can declare data in Haskell and use it polymorphically was a key selling point for
me!

Hopefully this series has inspired you to get started with Haskell if you haven't already! Download
our Getting Started Checklist or read our Liftoff Series to get going!

And don't forget to try this code out for yourself on Github! Take a look at the Type Families
module for the code from this part!

CONCLUSION

Revision #1
Created 11 March 2022 06:09:22 by gasick
Updated 11 March 2022 17:11:17 by gasick

