Ecnu Bbl BUANTE 4TO-TO HEOBbIYHOE, MPOCTO coobwmnTe MHe.

State MoHapna

B npowsion 4acTu, Mbl U3y4nan MOHabl Reader U Writer . OHM NakKak3wuJs, 4TO Ha caMoOM gerie
nMeem anTepHaTuBy rnobasbHbIM NepeMeHHbIM. HaM NPOCTO HY>KHO KakuM-To obpa3om
3aKJI04YUTb UX B onpefesieHHbIA TUM, 3TO TO AJ1 Yero OHW HY>XXHbl. B 3TOM 4acTu n3y4um State

MOHagdy, KoTopas 06beAnHAET HEKOTOPYIO PYHKLIMOHANBLHOCTL A1 060uX naen.

MoTuBauUnKn NoCT: KpeCTuku-
HOJTUKW

[na 3Ton 4acTu Mbl BOCNOJIb3yeMCS MPOCTON MoAesnbio ANs urpbl KpecTKku-HoAnKnu. I nasHbIn
00beKT 3TO TUN AaHHbIX GameState COAEpP>XaLLNA HECKOJIbKO Ba>XHbIX KyCOYKOB MHOpMaLNN.
lMepBoe 1 BaXXHOE, OH COOEPXUT "A0CKY", N OBYMEPHbIN MacCUB NHOEKCOB COCTOAHMA nonen(x/0

nNu NycTo). Tak e 3HaeT Yen Xo4 U UMeeT CAyYalHbIN reHepaTop.

data GameState = GameState
{ board :: A.Array TileIndex TileState
, currentPlayer :: Player
, generator :: StdGen

}
data Player = XPlayer | OPlayer

data TileState = Empty | HasX | HasO

deriving Eq

type TileIndex = (Int, Int)

[aBai B3rnsaHeM Ha TO, Kak HeEKOTopble U3 PYHKLMIN Halwen nrpel byayT pabotaTtb. Hanpumep
HY>XHO NpuAayMaTb PYHKUMIO A5 C/lyYanHoro Belbopa xona. OHa O0JIHA BbIBOAUTL Tilelndex ©
N3MEeHATb reHepaTop Halen Urpbl. 3aTeM OCHOBbLIBasiCb Ha HEM [ieflaeM Lar 1 rnepefaemM xon,
ApYyroMy Urpoky. lpyrmumMm cnoBamu, y Hac eCTb ornepaumn KoTopble 3aBUCAT OT TeKyLlero

COCTOAHNA UTPbl, HO TaK Xe 0BHOBJ/ISIET 3TO COCTOSIHME.

THE STATE MONAD

This is exactly the situation the State monad deals with. The State monad wraps computations in
the context of reading and modifying a global state object. This context chains two operations
together in an intuitive way. First, it determines what the state should be after the first operation.

Then, it resolves the second operation with the new state.

It is parameterized by a single type parameter s, the state type in use. So just like the Reader has a
single type we read from, the State has a single type we can both read from and write to. There are
two primary actions we can take within the State monad: get and put. The first retrieves the state,
the second modifies it by replacing it with a new object. Typically though, this new object will be

similar to the original:

-- Retrieves the state, like Reader.ask

get :: State s s

-- Overwrites the existing state

put :: s -> State s ()

There is also a runState function, similar to runReader and runWriter. Like the Reader monad, we
must provide an initial state, in addition to the computation to run. But then like the writer, it

produces two outputs: the result of our computation AND the final state:
runState :: s -> States a -> (a, s)

If we wish to discard either the final state or the computation's result, we can use evalState and

execState, respectively:

evalState :: Statesa->s->a
execState :: Statesa->s->s

So for our Tic Tac Toe game, many of our functions will have a signature like State GameState a.

OUR STATEFUL FUNCTIONS

Now we can examine some of the different functions mentioned above and determine their types.

We have for instance, picking a random move:

chooseRandomMove :: State GameState TileIndex
chooseRandomMove = do
game <- get
let openSpots = [fst pair | pair <- A.assocs (board game), snd pair == Empty]
let gen = generator game
let (i, gen') = randomR (0, length openSpots - 1) gen
put $ game { generator = gen' }

return $ openSpots !! i

This outputs a Tilelndex to us, and modifies the random number generator stored in our state! Now

we also have the function applying a move:

applyMove :: TileIndex -> State GameState ()
applyMove i = do

game <- get

let p = currentPlayer game

let newBoard = board game A.// [(i, tileForPlayer p)]

put $ game { currentPlayer = nextPlayer p, board = newBoard }

nextPlayer :: Player -> Player
nextPlayer XPlayer = OPlayer
nextPlayer OPlayer = XPlayer

tileForPlayer :: Player -> TileState
tileForPlayer XPlayer = HasX
tileForPlayer OPlayer = HasO

This updates the board with the new tile, and then changes the current player, providing no output.

So finally, we can combine these functions together with do-syntax, and it actually looks quite
clean! We don't need to worry about the side effects. The different monadic functions handle them.
Here's a sample of what your function might look like to play one turn of the game. At the end, it

returns a boolean determining if we've filled all the spaces:

resolveTurn :: State GameState Bool
resolveTurn = do
i <- chooseRandomMove
applyMove i

isGameDone

isGameDone :: State GameState Bool
isGameDone = do
game <- get
let openSpots = [fst pair | pair <- A.assocs (board game), snd pair == Empty]

return $ length openSpots == 0

Obviously, there are some more complications for how the game would work in full, but the general

idea should be clear. Any additional functions could live within the State monad.

STATE, 10, AND OTHER
LANGUAGES

When thinking about Haskell, it is often seen as a restriction that we can't have global variables
like you could with Java class variables. However, we see now this isn't true. We could have a data
type with exactly the same functionality as a Java class. We would just have many functions that

can modify the global state of the class object using the State monad.

The difference is in Haskell we simply put a label on these types of functions. We don't allow it to
happen for free. We want to know when side effects can potentially happen, because knowing
when they can happen makes our code easier to reason about. In a Java class, many of the

methods won't actually need to modify the state. But they could, which makes it harder to debug

them. In Haskell we can simply make these pure functions, and our code will be simpler.

IO is the same way. It's not like we can't perform IO in Haskell. Instead, we want to label the areas
where we can, to increase our certainty about the areas where we don't need to. When we know
part of our code cannot communicate with the outside world, we can be far more certain of its

behavior.

SUMMARY

That wraps it up for the State monad! Now that we know all these different monad constructs, you
might be wondering how we can combine them. What if there was some part of our state that we
wanted to be able to modify (using the State monad), but then there was another part that was
read-only. How can we get multiple monadic capabilities at the same time? To learn to answer,
head to part 6! In the penultimate section of this series, we'll discuss monad transformers. This

concept will allow us to compose several monads together into a single monad!

Now that you're starting to understand monads, you can really pick up some steam on learning
some useful libraries for important tasks. Download our Production Checklist for some examples of

libraries that you can learn!

Revision #2
Created 11 March 2022 05:41:58 by gasick
Updated 28 September 2022 05:33:07 by gasick

