
Если вы видите что-то необычное, просто сообщите мне.

In part 1 of this series, we started our exploration of the world of APIs by integrating Haskell with
Twilio. We were able to send a basic SMS message, and then create a server that could respond to
a user's message. In this part, we're going to venture into another type of effect: sending emails.
We'll be using Mailgun for this task, along with the Hailgun Haskell API for it.

You can take a look at the full code for this article by looking on our Github repository. For this part,
you'll want to look at the Email module and the Full Server. If this article sparks your curiosity for
more Haskell libraries, you should download our Production Checklist! If you've already read this
part, feel free to move onto part 3 where we look at managing an email list with Mailchimp!

To start with, we'll need a mailgun account obviously. Signing up is free and straightforward. It will
ask you for an email domain, but you don't need one to get started. As long as you're in testing
mode, you can use a sandbox domain they provide to host your mail server.

With Twilio, we had to specify a "verified" phone number that we could message in testing mode.
Similarly, you will also need to designate a verified email address. Your sandboxed domain will only
be able to send to this address. You'll also need to save a couple pieces of information about your
Mailgun account. In particular, you need your API Key, the sandboxed email domain, and the reply
address for your emails to use. You'll also want the verified email you can send to. Save these as
environment variables on your local system and remote machine.

Sending Emails with Mailgun

MAKING AN ACCOUNT

BASIC EMAIL

Now let's get a feel for the Hailgun code by sending a basic email. All this occurs in the simple IO
monad. We ultimately want to use the function sendEmail, which requires both a HailgunContext
and a HailgunMessage:

We'll start by retrieving our environment variables. With our domain and API key, we can build the
HailgunContext we'll need to pass as an argument.

Now to build the message itself, we'll use a builder function hailgunMessage. It takes several
different parameters:

These are all very easy to fill in. The MessageSubject is Text and then we'll pass our reply address
and verified address from above. For the content, we'll start by using the TextOnly constructor for a
plain text email. We'll see an example later of how we can use HTML in the content:

sendEmail
 :: HailgunContext
 -> HailgunMessage
 -> IO (Either HailgunErrorResponse HailgunSendResponse)

import Data.ByteString.Char8 (pack)

sendBasicMail :: IO ()
sendBasicMail = do
 domain <- getEnv "MAILGUN_DOMAIN"
 apiKey <- getEnv "MAILGUN_API_KEY"
 replyAddress <- pack <$> getEnv "MAILGUN_REPLY_ADDRESS"
 toAddress <- pack <$> getEnv "MAILGUN_USER_ADDRESS"
 -- Last argument is an optional proxy
 let context = HailgunContext domain apiKey Nothing
 ...

hailgunMessage
 :: MessageSubject
 -> MessageContent
 -> UnverifiedEmailAddress -- Reply Address, just a ByteString
 -> MessageRecipients
 -> [Attachment]
 -> Either HailgunErrorMessage HailgunMessage

The MessageRecipients type has three fields. First are the direct recipients, then the CC'd emails,
and then the BCC'd users. We're only sending to a single user at the moment. So we can take the
emptyMessageRecipients item and modify it. We'll wrap up our construction by providing an empty
list of attachments for now:

If there are issues, the hailgunMessage function can throw an error, as can the sendEmail function
itself. But as long as we check these errors, we're in good shape to send out the email!

sendMail :: IO ()
sendMail = do
 ...
 replyAddress <- pack <$> getEnv "MAILGUN_REPLY_ADDRESS"
 let msg = mkMessage replyAddress
 ...
 where
 mkMessage toAddress replyAddress = hailgunMessage
 "Hello Mailgun!"
 (TextOnly "This is a test message.")
 replyAddress
 ...

where
 mkMessage toAddress replyAddress = hailgunMessage
 "Hello Mailgun!"
 (TextOnly "This is a test message.")
 replyAddress
 (emptyMessageRecipients { recipientsTo = toAddress })
 []

sendBasicEmail :: IO ()
sendBasicEmail = do
 domain <- getEnv "MAILGUN_DOMAIN"
 apiKey <- getEnv "MAILGUN_API_KEY"
 replyAddress <- pack <$> getEnv "MAILGUN_REPLY_ADDRESS"
 toAddress <- pack <$> getEnv "MAILGUN_USER_ADDRESS"
 let context = HailgunContext domain apiKey Nothing
 case mkMessage toAddress replyAddress of
 Left err -> putStrLn ("Making failed: " ++ show err)
 Right msg -> do

Notice how it's very easy to build all our functions up when we start with the type definitions. We
can work through each type and figure out what it needs. I reflect on this idea some more in this
article on Compile Driven Learning, which is part of our Haskell Brain Series for newcomers to
Haskell!

Now that we know how to send emails, let's incorporate it into our server! We'll start by writing
another data type that will represent the potential commands a user might text to us. For now, it
will only have the "subscribe" command.

Now let's write a function that will take their message and interpret it as a command. If they text
subscribe {email}, we'll send them an email!

Now we'll extend our server handler to reply. If we interpret their command correctly, we'll send a
replay email with a new function sendSubscribeEmail. Otherwise, we'll send them back a text
saying we couldn't understand them.

 result <- sendEmail context msg -- << Send Email Here!
 case result of
 Left err -> putStrLn ("Sending failed: " ++ show err)
 Right resp -> putStrLn ("Sending succeeded: " ++ show resp)
 where
 mkMessage toAddress replyAddress = hailgunMessage

EXTENDING OUR SERVER

data SMSCommand = SubscribeCommand Text

messageToCommand :: Text -> Maybe SMSCommand
messageToCommand messageBody = case splitOn " " messageBody of
 ["subscribe", email] -> Just $ SubscribeCommand email
 _ -> Nothing

incomingHandler :: IncomingMessage -> Handler ()
incomingHandler (IncomingMessage from body) = liftIO $ do
 case messageToCommand body of
 Nothing -> do

Now all we have to do is construct this new email. Let's add a couple new features beyond the
basic email we made before.

Let's start by adding an attachment. We can build an attachment by providing a path to a file as
well as a string describing it. To get this file, our message making function will need the current
running directory.

 twilioNum <- fetchTwilioNumber
 runTwilio' fetchSid fetchToken $ do
 let body = "Sorry, we didn't understand that request!"
 let newMessage = PostMessage from twilioNum body Nothing
 _ <- post newMessage
 return ()
 Just (SubscribeCommand email) -> sendSubscribeEmail email

sendSubscribeEmail :: Text -> IO ()
sendSubscribeEmail = ...

MORE ADVANCED EMAILS

mkSubscribeMessage :: ByteString -> ByteString -> FilePath -> Either HailgunErrorMessage HailgunMessage
mkSubscribeMessage replyAddress subscriberAddress currentDir =
 hailgunMessage
 "Thanks for signing up!"
 content
 replyAddress
 (emptyMessageRecipients { recipientsTo = [subscriberAddress] })
 -- Notice the attachment!
 [Attachment
 (rewardFilepath currentDir)
 (AttachmentBS "Your Reward")
]
 where
 content = TextOnly "Here's your reward!"

rewardFilepath :: FilePath -> FilePath
rewardFilepath currentDir = currentDir ++ "/attachments/reward.txt"

As long as the reward file lives on our server, that's all we need to do to send that file to the user.
Now to show off one more feature, let's change the content of our email so that it contains some
HTML instead of only text. In particular, we'll give them the chance to confirm their subscription by
clicking a link to our server. All that changes here is that we'll use the TextAndHTML constructor
instead of TextOnly. We do want to provide a plain text interpretation of our email in case HTML
can't be rendered for whatever reason. Notice the use of the <a> tags for the link:

If you're running our code on your own Heroku server, you'll need to change the app name (mmh-
apis) in the URLs above.

Then to round this code out, all we'll need to do is fill out sendSubscribeEmail to use our function
above. It will reference the same environment variables we have in our other function:

content = TextAndHTML
 textOnly
 ("Here's your reward! To confirm your subscription, click " <>
 link <> "!")
 where
 textOnly = "Here's your reward! To confirm your subscription, go to "
 <> "https://mmh-apis.herokuapp.com/api/subscribe/"
 <> subscriberAddress
 <> " and we'll sign you up!"
 link = "<a href=\"https://mmh-apis.herokuapp.com/api/subscribe/"
 <> subscriberAddress <> "\">this link"

sendSubscribeEmail :: Text -> IO ()
sendSubscribeEmail email = do
 domain <- getEnv "MAILGUN_DOMAIN"
 apiKey <- getEnv "MAILGUN_API_KEY"
 replyAddress <- pack <$> getEnv "MAILGUN_REPLY_ADDRESS"
 let context = HailgunContext domain apiKey Nothing
 currentDir <- getCurrentDirectory
 case mkSubscribeMessage replyAddress (encodeUtf8 email) currentDir of
 Left err -> putStrLn ("Making failed: " ++ show err)
 Right msg -> do
 result <- sendEmail context msg
 case result of
 Left err -> putStrLn ("Sending failed: " ++ show err)

Our course, we'll want to add a new endpoint to our server to handle the subscribe link we added
above. But we'll handle that in the last part of the series. Hopefully from this part, you've learned
that sending emails with Haskell isn't too scary. The Hailgun API is quite intuitive and when you
break things down piece by piece and look at the types involved.

There's a lot of advanced material in this series, so if you think you need to backtrack, don't worry,
we've got you covered! Our Real World Haskell Series will teach you how to use libraries like
Persistent for database management and Servant for making an API. For some more libraries you
can use to write enhanced Haskell, download our Production Checklist!

If you've never programmed in Haskell at all, you should try it out! Download our Haskell
Beginner's Checklist or read our Liftoff Series!

 Right resp -> putStrLn ("Sending succeeded: " ++ show resp)

CONCLUSION

Revision #1
Created 11 March 2022 16:24:21 by gasick
Updated 11 March 2022 17:11:16 by gasick

