
Если вы видите что-то необычное, просто сообщите мне.

In part 2 of this series, we continued learning the basic elements of Purescript. We examined how
typeclasses and monads work and the slight differences from Haskell. Now it's finally time to use
Purescript for its main purpose: frontend web development. We'll accomplish this using the
Halogen framework, built on React.js.

In this part, we'll learn about the basic concepts of Halogen/React. We'll build a couple simple
components to show how these work. In the final part of this series, we'll conclude our look at
Purescript by making a more complete application. We'll see how to handle routing and sending
web requests.

If you're building a frontend, you'll also need a backend at some point. Check out our Haskell Web
Series to learn how to do that in Haskell!

Also, getting Purescript to work can be tricky business! Take a look at our Github repository for
some more setup instructions!

The Halogen framework uses React.js under the hood, and the code applies similar ideas. If you
don't do a lot of web development, you might not be too familiar with the details of React. Luckily,
there are a few simple principles we'll apply that will remind us of Elm!

With Halogen, our UI consists of different "components". A component is a UI element that
maintains its own state and properties. It also responds to queries, and sends messages. For any
component, we'll start by defining a a state type, a query type, and a message type.

Purescript Part 3: Simple
Web UI's

HALOGEN CRASH COURSE

Our component receives queries from within itself or from other components. It can then send
messages to other components, provided they have queries to handle them. With these types in
place, we'll use the component function to define a component with 3 main elements. As a note,
we'll be maintaining these import prefixes throughout the article.

The initialState is self explanatory. The render function will be a lot like our view function from Elm.
It takes a state and returns HTML components that can send queries. The eval function acts like our
update function in Elm. Its type signature looks a little strange. But it takes queries as inputs and

data CState = ...

data CQuery = ...

data CMessage = ...

import Halogen as H
import Halogen.HTML as HH
import Halogen.Events as HE
import Halogen.Properties as HP

myComponent :: forall m.
 H.Component HH.HTML CQuery Unit CMessage m
myComponent = H.component
 { initialState: ...
 , render: ...
 , eval: ...
 , receiver: const Nothing
 }

 where

 render ::
 CState ->
 H.ComponentHTML CQuery

 eval ::
 CQuery ~>
 H.ComponentDSL CState CQuery CMessage m

can update our state using State monad function. It can also emit messages to send to other
components.

For our first example of a component, we'll make a simple counter. We'll have an increment button,
a decrement button and a display of the current count. Our state will be a simple integer. Our
queries will involve events from incrementing and decrementing. We'll also send a message each
time we update our number.

Notice we have an extra parameter on our query type. This represents the "next" action that will
happen in our UI. We'll see how this works when we write our eval function. But first, let's write out
our render function. It has three different HTML elements: two buttons and a p label. We'll stick
them in a div element.

BUILDING A COUNTER

type State = Int

data Query a =
 Increment a |
 Decrement a

data Message = Updated Int

render :: State -> H.ComponentHTML Query
render state =
 let incButton = HH.button
 [HP.title "Inc"
 , HE.onClick (HE.input_ Increment)
]
 [HH.text "Inc"]
 decButton = HH.button
 [HP.title "Dec"
 , HE.onClick (HE.input_ Decrement)
]
 [HH.text "Dec"]
 pElement = HH.p [] [HH.text (show state)]

Each of our elements takes two list parameters. The first list includes properties as well as event
handlers. Notice our buttons send query messages on their click events using the input_ function.
Then the second list is "child" HTML elements, including the inner text of a button.

Now, to write our eval function, we use a case statement. This might seem a little weird, but all
we're doing is breaking it down into our query cases:

Within each case, we can use State monad-like functions to manipulate our state. Our cases are
identical except for the sign. We'll also use the raise function to send an update message. Nothing
listens for that message right now, but it illustrates the concept.

As a last note, we would use const 0 as the initialState in our component function.

 in HH.div [] [incButton, decButton, pElement]

eval :: Query ~> H.ComponentDSL State Query Message m
eval = case _ of
 Increment next -> ...
 Decrement next -> ...

eval :: Query ~> H.ComponentDSL State Query Message m
eval = case _ of
 Increment next -> do
 state <- H.get
 let nextState = state + 1
 H.put nextState
 H.raise $ Updated nextState
 pure next
 Decrement next -> do
 state <- H.get
 let nextState = state - 1
 H.put nextState
 H.raise $ Updated nextState
 pure next

Now to display this component in our UI, we write a short Main module like so. We get our body
element with awaitBody and then use runUI to install our counter component.

And our counter component will now work! (See Github for more details on you could run this
code).

Now that we've got the basics down, let's see how to write a more complicated set of components.
We'll write a Todo list like we had in the Elm series. To start, let's make a Todo wrapper type and
derive some instances for it:

INSTALLING OUR
COMPONENT

module Main where

import Prelude
import Effect (Effect)
import Halogen.Aff as HA
import Halogen.VDom.Driver (runUI)
import Counter (counter)

main :: Effect Unit
main = HA.runHalogenAff do
 body <- HA.awaitBody
 runUI counter unit body

BUILDING OUR TODO LIST

newtype Todo = Todo
 { todoName :: String }

derive instance eqTodo :: Eq Todo
derive instance ordTodo :: Ord Todo

Our first component will be the entry form, where the user can add a new task. This form will use
the text input string as its state. It will respond to queries for updating the name as well as
pressing the "Add" button. When we create a new Todo, we'll send a message for that.

When we render this component, we'll have two main pieces. First, we need the text field to input
the name. Then, there's the button to add the task. Each of these has an event attached to it
sending the relevant query. In the case of updating the name, notice we use input instead of
input_. This allows us to send the text field's value as an argument of the UpdatedName query.
Otherwise, the properties are pretty straightforward translations of HTML properties you might see.

Evaluating our queries is pretty simple. When updating the name, all we do is update the state and
trigger the next action. When we add a new Todo item, we save the empty string as the state and

type AddTodoFormState = String

data AddTodoFormMessage = NewTodo Todo

data AddTodoFormQuery a =
 AddedTodo a |
 UpdatedName String a

render ::
 AddTodoFormState ->
 H.ComponentHTML AddTodoFormQuery
render currentName =
 let nameInput = HH.input
 [HP.type_ HP.InputText
 , HP.placeholder "Task Name"
 , HP.value currentName
 , HE.onValueChange (HE.input UpdatedName)
]
 addButton = HH.button
 [HP.title "Add Task"
 , HP.disabled (length currentName == 0)
 , HE.onClick (HE.input_ AddedTodo)
]
 [HH.text "Add Task"]
 in HH.div [] [nameInput, addButton]

raise our message. In the next part, we'll see how our list will respond to this message.

And of course, we tie this all up by using the component function:

Now to complete our todo list, we'll need another component to store the tasks themselves. As
always, let's start with our basic types. We won't bother with a message type since this component
won't send any messages. We'll use Void when assigning the message type in a type signature:

eval ::
 AddTodoFormQuery ~>
 H.ComponentDSL
 AddTodoFormState AddTodoFormQuery AddTodoFormMessage m
eval = case _ of
 AddedTodo next -> do
 currentName <- H.get
 H.put ""
 H.raise $ NewTodo (Todo {todoName: currentName})
 pure next
 UpdatedName newName next -> do
 H.put newName
 pure next

addTodoForm :: forall m.
 H.Component HH.HTML AddTodoFormQuery Unit AddTodoFormMessage m
addTodoForm = H.component
 { initialState: const ""
 , render
 , eval
 , receiver: const Nothing
 }

FINISHING THE LIST

type TodoListState = Array Todo

data TodoListQuery a =
 FinishedTodo Todo a |

Our state is our list of tasks. Our query type is a little more complicated. The HandleNewTask query
will receive the new task messages from our form. We'll see how we make this connection below.

We'll also add a type alias for AddTodoFormSlot. Halogen uses a "slot ID" to distinguish between
child elements. We only have one child element though, so we'll use a string.

We'll consider this component a "parent" of our "add task" form. This means the types will look a
little different. We'll be making something of type ParentHTML. The type signature will include
references to its own query type, the query type of its child, and the slot ID type. We'll still use
most of the same functions though.

To render our elements, we'll have two sub-components. First, we'll want to be able to render an
individual Todo within our list. We'll give it a p label for the name and a button that completes the
task:

 HandleNewTask AddTodoFormMessage a

type AddTodoFormSlot = String

render ::
 TodoListState ->
 H.ParentHTML TodoListQuery AddTodoFormQuery AddTodoFormSlot m

eval ::
 TodoListQuery ~>
 H.ParentDSL TodoListState TodoListQuery AddTodoFormQuery
 AddTodoFormSlot Void m

renderTask ::
 Todo ->
 H.ParentHTML TodoListQuery AddTodoFormQuery AddTodoFormSlot m
renderTask (Todo t) = HH.div_
 [HH.p [] [HH.text t.todoName]
 , HH.button
 [HE.onClick (HE.input_ (FinishedTodo (Todo t)))]
 [HH.text "Finish"]
]

Now we need some HTML for the form slot itself. This is straightforward. We'll use the slot function
and provide a string for the ID. We'll specify the component we have from the last part. Then we'll
attach the HandleNewTask query to this component. The allows our list component to receive the
new-task messages from the form.

Now we combine these elements in our render function:

Writing our eval is now a simple matter of using a few array functions to update the list. When we
get a new task, we add it to our list. When we finish a task, we remove it from the list.

formSlot ::
 H.ParentHTML TodoListQuery AddTodoFormQuery AddTodoFormSlot m
formSlot = HH.slot
 "Add Todo Form"
 addTodoForm
 unit
 (HE.input HandleNewTask)

render ::
 TodoListState ->
 H.ParentHTML TodoListQuery AddTodoFormQuery AddTodoFormSlot m
render todos =
 let taskList = HH.ul_ (map renderTask todos)
 in HH.div_ [taskList, formSlot]

eval ::
 TodoListQuery ~>
 H.ParentDSL TodoListState TodoListQuery AddTodoFormQuery
 AddTodoFormSlot Void m
eval = case _ of
 FinishedTodo todo next -> do
 currentTasks <- H.get
 H.put (filter (_ /= todo) currentTasks)
 pure next
 HandleNewTask (NewTodo todo) next -> do
 currentTasks <- H.get
 H.put (currentTasks `snoc` todo)
 pure next

And that's it! We're done! Again, take a look at the Github repo for some more instructions on how
you can run and interact with this code.

This wraps up our look at building simple UI's with Purescript. In part 4, we'll conclude our
Purescript series. We'll look at some of the broader elements of building a web app. We'll see some
basic routing as well as how to send requests to a backend server.

Elm is another great functional language you can use for Web UIs. To learn more about it, check
out our Elm Series!

CONCLUSION

Revision #1
Created 11 March 2022 16:55:26 by gasick
Updated 11 March 2022 17:11:16 by gasick

