
Если вы видите что-то необычное, просто сообщите мне.

Our Haskell Web Series covers a lot of cool libraries you can use when making a web app. But
frontend web development can be quite a different story! There are a number libraries and
frameworks out there. Yesod and Snap come to mind. Another option is Reflex FRP, which uses
GHCJS under the hood.

But in this series we'll take different approach by exploring the Purescript language. Purescript is a
bit of a meld between Haskell and Javascript. Its syntax is like Haskell's, and it incorporates many
elements of functional purity. But it compiles to Javascript and thus has some features that seem
more at home in that language.

In this part, we'll start out by exploring the basics of Purescript. If you're already familiar with
those, you can move right onto part 2 of the series! There, we'll see some of the main similarities
and differences between it and Haskell. We'll culminate this series by making a web front-end with
Purescript and routing between different pages.

Purescript is the tip of the iceberg when it comes to using functional languages in production!
Check out our Production Checklist for some awesome Haskell libraries!

Since Purescript is its own language, we'll need some new tools. You can follow the instructions on
the Purescript website, but here are the main points.

1. Install Node.js and NPM, the Node.js package manager
2. Run npm install -g purescript

Purescript Part 1: Basics of
Purescript

GETTING STARTED

3. Run npm install -g pulp bower
4. Create your project directory and run pulp init.
5. You can then build and test code with pulp build and pulp test.
6. You can also use PSCI as a console, similar to GHCI. First, we need NPM. Purescript is its

own language, but we want to compile it to Javascript we can use in the browser, so we
need Node.js. Then we'll globally install the Purescript libraries. We'll also install pulp and
bower. Pulp will be our build tool like Cabal.

Bower is a package repository like Hackage. To get extra libraries into our program, you would use
the bower command. For instance, we need purescript-integers for our solution later in the article.
To get this, run the command:

Once you're set up, it's time to start dabbling with the language. While Purescript compiles to
Javascript, the language itself actually looks a lot more like Haskell! We'll examine this by
comparison. Suppose we want to find the all pythagorean triples whose sum is less than 100.
Here's how we can write this solution in Haskell:

bower install --save purescript-integers

A SIMPLE EXAMPLE

sourceList :: [Int]
sourceList = [1..100]

allTriples :: [(Int, Int, Int)]
allTriples =
 [(a, b, c) | a <- sourceList, b <- sourceList, c <- sourceList]

isPythagorean :: (Int, Int, Int) -> Bool
isPythagorean (a, b, c) = a ^ 2 + b ^ 2 == c ^ 2

isSmallEnough :: (Int, Int, Int) -> Bool
isSmallEnough (a, b, c) = a + b + c < 100

finalAnswer :: [(Int, Int, Int)]
finalAnswer = filter

Let's make a module in Purescript that will allow us to solve this same problem. We'll start by
writing a module Pythagoras.purs. Here's the code we would write to match up with the Haskell
above. We'll examine the specifics piece-by-piece below.

 (\t -> isPythagorean t && isSmallEnough t)
 allTriples

module Pythagoras where

import Data.List (List, range, filter)
import Data.Int (pow)
import Prelude

sourceList :: List Int
sourceList = range 1 100

data Triple = Triple
 { a :: Int
 , b :: Int
 , c :: Int
 }

allTriples :: List Triple
allTriples = do
 a <- sourceList
 b <- sourceList
 c <- sourceList
 pure $ Triple {a: a, b: b, c: c}

isPythagorean :: Triple -> Boolean
isPythagorean (Triple triple) =
 (pow triple.a 2) + (pow triple.b 2) == (pow triple.c 2)

isSmallEnough :: Triple -> Boolean
isSmallEnough (Triple triple) =
 (triple.a) + (triple.b) + (triple.c) < 100

finalAnswer :: List Triple
finalAnswer = filter

For the most part, things are very similar! We still have expressions. These expressions have type
signatures. We use a lot of similar elements like lists and filters. On the whole, Purescript looks a lot
more like Haskell than Javascript. But there are some key differences. Let's explore those, starting
with the higher level concepts.

One difference you can't see in code syntax is that Purescript is NOT lazily evaluated. Javascript is
an eager language by nature. So it is much easier to compile to JS by starting with an eager
language in the first place.

But now let's consider some of the differences we can see from the code. For starters, we have to
import more things. Purescript does not import a Prelude by default. You must always explicitly
bring it in. We also need imports for basic list functionality.

And speaking of lists, Purescript lacks a lot of the syntactic sugar Haskell has. For instance, we
need to use List Int rather than [Int]. We can't use .. to create a range, but instead resort to the
range function.

We also cannot use list comprehensions. Instead, to generate our original list of triples, we use the
list monad. As with lists, we have to use the term Unit instead of ():

In the next part, we'll discuss the distinction between Effect in Purescript and monadic constructs
like IO in Haskell.

One annoyance is that polymorphic type signatures are more complicated. Whereas in Haskell, we
have no issue creating a type signature [a] -> Int, this will fail in Purescript. Instead, we must
always use the forall keyword:

 (\triple -> isPythagorean triple && isSmallEnough triple)
 allTriples

DIFFERENCES

-- Comparable to main :: IO ()
main :: Effect Unit
main = do
 log "Hello World!"

Another thing that doesn't come up in this example is the Number type. We can use Int in
Purescript as in Haskell. But aside from that the only important numeric type is Number. This type
can also represent floating point values. Both of these get translated into the number type in
Javascript.

But now let's get into one of the more glaring differences between our examples. In Purescript, we
need to make a separate Triple type, rather than using a simple 3-tuple. Let's look at the reasons
for this by considering data types in general.

If we want, we can make Purescript data types in the same way we would in Haskell. So we could
make a data type to represent a Pythagorean triple:

This works fine in Purescript. But, it forces us to use pattern matching every time we want to pull
an individual value out of this element. We can fix this in Haskell by using record syntax to give
ourselves accessor functions:

This syntax still works in Purescript, but it means something different. In Purescript a record is its
own type, like a generic Javascript object. For instance, we could do this as a type synonym and not
a full data type:

myListFunction :: forall a. List a -> Int

PURESCRIPT DATA TYPES

data Triple = Triple a b c

data Triple = Triple
 { a :: Int
 , b :: Int
 , c :: Int
 }

type Triple = { a :: Int, b :: Int, c :: Int}

oneTriple :: Triple
oneTriple = { a: 5, b: 12, c: 13}

Then, instead of using the field names like functions, we use "dot-syntax" like in Javascript. Here's
what that looks like with our type synonym definition:

Here's where it gets confusing though. If we use a full data type with record syntax, Purescript no
longer treats this as an item with 3 fields. Instead, we would have a data type that has one field,
and that field is a record. So we would need to unwrap the record using pattern matching before
using the accessor functions.

That's a pretty major gotcha. The compiler error you get from making this mistake is a bit
confusing, so be careful!

type Triple = { a :: Int, b :: Int, c :: Int}

oneTriple :: Triple
oneTriple = { a: 5, b: 12, c: 13}

sumAB :: Triple -> Int
sumAB triple = triple.a + triple.b

data Triple = Triple
 { a :: Int
 , b :: Int
 , c :: Int
 }

oneTriple :: Triple
oneTriple = Triple { a: 5, b: 12, c: 13}

sumAB :: Triple -> Int
sumAB (Triple triple) = triple.a + triple.b

-- This is wrong!
sumAB :: Triple -> Int
sumAB triple = triple.a + triple.b

With this understanding, the Purescript code above should make some more sense. But we'll go
through it one more time and point out the little details.

To start out, let's make our source list. We don't have the range syntactic sugar, but we can still
use the range function:

We don't have list comprehensions. But we can instead use do-syntax with lists instead to get the
same effect. Note that to use do-syntax in Purescript we have to import Prelude. In particular, we
need the bind function for that to work. So let's generate all the possible triples now.

PYTHAGORAS IN
PURESCRIPT

import Data.List (List, range, filter)

data Triple = Triple
 { a :: Int
 , b :: Int
 , c :: Int
 }

sourceList :: List Int
sourceList = range 1 100

import Prelude

...

allTriples :: List Triple
allTriples = do
 a <- sourceList
 b <- sourceList
 c <- sourceList
 pure $ Triple {a: a, b: b, c: c}

Notice also we use pure instead of return. Now let's write our filtering functions. These will use the
record pattern matching and accessing mentioned above.

And now our solution will work!

This conludes part 1 of our Purescript series. Syntactically, Purescript is a very near cousin of
Haskell. But there are a few key differences we highlighted here about the nature of the language.

In part 2, we'll look at some other important differences in the type system. We'll see how
Purescript handles type-classes and monads. After that, we'll see how we can use Purescript to
build a web front-end with some of the security of a solid type system.

Download our Production Checklist for some more cool ideas of libraries you can use!

isPythagorean :: Triple -> Boolean
isPythagorean (Triple triple) =
 (pow triple.a 2) + (pow triple.b 2) == (pow triple.c 2)

isSmallEnough :: Triple -> Boolean
isSmallEnough (Triple triple) =
 (triple.a) + (triple.b) + (triple.c) < 100
Finally, we can combine it all with filter in much the same way we did in Haskell:

finalAnswer :: List Triple
finalAnswer = filter
 (\triple -> isPythagorean triple && isSmallEnough triple)
 allTriples

CONCLUSION

Revision #1
Created 11 March 2022 16:51:19 by gasick
Updated 11 March 2022 17:11:16 by gasick

