
Если вы видите что-то необычное, просто сообщите мне.

I've said it before, but I'll say it again. As much as we'd like to think it's the case, our Haskell code
doesn't work just because it compiles. In part 1 of this testing series, we saw how to construct basic
test suites to make sure our code functions properly. But even if it passes our test suites, this
doesn't mean it works as well as it could either. Sometimes we'll realize that the code we wrote
isn't quite performant enough, so we'll have to make improvements.

But improving our code can sometimes feel like taking shots in the dark. You'll spend a great deal
of time tweaking a certain piece. Then you'll find you haven't actually made much of a dent in the
total run time of the application. Certain operations generally take longer, like database calls,
network operations, and IO. So you can often have a decent idea of where to start. But it always
helps to be sure. This is where benchmarking and profiling come in. We're going to take a specific
problem and learn how we can use some Haskell tools to zero in on the problem point. In part 3 of
this series, we'll see how we can fix some of the problems that we identify with some advanced
data structures!

As a note, the tools we'll use require you to be organizing your code using Stack or Cabal. If you've
never used either of these before, you should check out our Stack Mini Course! It'll teach you the
basics of creating a project with Stack. You'll also learn the primary commands to use with Stack.
It's free, so check it out!

You can also follow along with this code by heading to the Github repository for this series! The
bulk of the code for this part lives in the Fences module and the Benchmark file that we'll design.

Our overarching problem for this article will be the "largest rectangle" problem. You can actually
try to solve this problem yourself on Hackerrank under the name "John and Fences". Imagine we
have a series of vertical bars with varying heights placed next to each other. We want to find the

Profiling and Benchmarking

THE PROBLEM

area of the largest rectangle that we can draw over these bars that doesn't include any empty
space. Here's a visualization of one such problem and solution:

In this example, we have posts with heights [2,5,7,4,1,8]. The largest rectangle we can form has an

area of 12, as we see with the highlighted squares.

This problem is pretty neat and clean to solve with Haskell, as it lends itself to a recursive solution.
First let's define a couple newtypes to illustrate our concepts for this problem. We'll use a compiler
extension to derive the Num typeclass on our index type, as this will be useful later.

Next, we'll define our primary function. It will take our FenceValues, a list of integers, and return
our solution.

Fence Problem.png

{-# LANGUAGE GeneralizedNewtypeDeriving #-}
...
newtype FenceValues = FenceValues { unFenceValues :: [Int] }
newtype FenceIndex = FenceIndex { unFenceIndex :: Int }
 deriving (Eq, Num, Ord)
-- Left Index is inclusive, right index is non-inclusive
newtype FenceInterval = FenceInterval { unFenceInterval :: (FenceIndex, FenceIndex) }
newtype FenceSolution = FenceSolution { unFenceSolution :: Int }
 deriving (Eq, Show, Ord)

https://notepad.gasick.ru/uploads/images/gallery/2022-03/image-1646977948017.png

It in turn will call our recursive helper function. This function will calculate the largest rectangle
over a specific interval. We can solve it recursively by using smaller and smaller intervals. We'll
start by calling it on the interval of the whole list.

Now, to break this into recursive cases, we need some more information first. What we need is the
index i of the minimum height in this interval. One option is that we could make a rectangle
spanning the whole interval with this height.

Any other "largest rectangle" won't use this particular index. So we can then divide our problem
into two more cases. In the first, we'll find the largest rectangle on the interval to the left. In the
second, we'll look to the right.

As your might realize, these two cases simply involve making recursive calls! Then we can easily
compare their results. The only thing we need to add is a base case. Here are all these cases
represented in code:

largestRectangle :: FenceValues -> FenceSolution
largestRectangle values = ...

largestRectangle :: FenceValues -> FenceSolution
largestRectangle values = largestRectangleAtIndices values
 (FenceInterval (FenceIndex 0, FenceIndex (length (unFenceValues values))))

largestRectangleAtIndices :: FenceValues -> FenceInterval -> FenceSolution
largestRectangleAtIndices = ...

largestRectangleAtIndices :: FenceValues -> FenceInterval -> FenceSolution
largestRectangleAtIndices
 values
 interval@(FenceInterval (leftIndex, rightIndex)) =
 -- Base Case: Checks if left + 1 >= right
 if isBaseInterval interval
 then FenceSolution (valueAtIndex values leftIndex)
 -- Compare three cases
 else max (max middleCase leftCase) rightCase
 where
 -- Find the minimum height and its index
 (minIndex, minValue) = minimumHeightIndexValue values interval

And just like that, we're actually almost finished. The only sticking point here is a few helper
functions. Three of these are simple:

Now we have to determine the minimum on this interval. Let's do this in the most naive way, by
scanning the whole interval with a fold.

And now we're done! As an exercise you can head to this unit test module and write some HUnit
tests for this function. Write a few basic tests at first, and then incorporate a test case for the
input10000 and output10000 expressions in the file. Run the tests with this command:

 -- Case 1: Use the minimum index
 middleCase = FenceSolution $ (intervalSize interval) * minValue
 -- Recursive call #1
 leftCase = largestRectangleAtIndices values (FenceInterval (leftIndex, minIndex))
 -- Guard against case where there is no "right" interval
 rightCase = if minIndex + 1 == rightIndex
 then FenceSolution (minBound :: Int) -- Supply a "fake" solution that we'll ignore
 -- Recursive call #2
 else largestRectangleAtIndices values (FenceInterval (minIndex + 1, rightIndex))

valueAtIndex :: FenceValues -> FenceIndex -> Int
valueAtIndex values index = (unFenceValues values) !! (unFenceIndex index)

isBaseInterval :: FenceInterval -> Bool
isBaseInterval (FenceInterval (FenceIndex left, FenceIndex right)) = left + 1 >= right

intervalSize :: FenceInterval -> Int
intervalSize (FenceInterval (FenceIndex left, FenceIndex right)) = right - left

minimumHeightIndexValue :: FenceValues -> FenceInterval -> (FenceIndex, Int)
minimumHeightIndexValue values (FenceInterval (FenceIndex left, FenceIndex right)) =
 foldl minTuple (FenceIndex (-1), maxBound :: Int) valsInInterval
 where
 valsInInterval :: [(FenceIndex, Int)]
 valsInInterval = drop left (take right (zip (FenceIndex <$> [0..]) (unFenceValues values)))
 minTuple :: (FenceIndex, Int) -> (FenceIndex, Int) -> (FenceIndex, Int)
 minTuple old@(_, heightOld) new@(_, heightNew) =
 if heightNew < heightOld then new else old

Now, this is a neat little algorithmic solution, but we want to know if our code is efficient. We need
to know if it will scale to larger input values. If you incorporated the size-10000 example into your
unit tests, you may have found that the test suite is suddenly quite a bit slower.

We can find the answer to these performance questions by writing benchmarks. Benchmarks are a
feature we can use in conjunction with Cabal and Stack. They work a lot like test suites. But instead
of proving the correctness of our code, they'll show us how fast our code runs under various
circumstances. We'll use the Criterion library to do this. We'll start by adding a section in our .cabal
file for this benchmark:

Now we'll look at our FencesBenchmark file, make it a Main module and add a main function. We'll
start by generating 6 lists, increasing in size by a factor of 10 each time.

>> stack build Testing:test:fences-tests

BENCHMARKING OUR CODE

benchmark fences-benchmark
 type: exitcode-stdio-1.0
 hs-source-dirs: benchmark
 main-is: FencesBenchmark.hs
 build-depends: base
 , Testing
 , criterion
 , random
 default-language: Haskell2010

module Main where

import Criterion
import Criterion.Main (defaultMain)
import System.Random

import Fences

main :: IO ()

Now the syntax for the Criterion library is a lot like HUnit in many respects. It has a defaultMain
function. The Benchmark type is a lot like the TestTree type. We can create a single Benchmark
using the bench expression, and combine a group of them with bGroup:

The difference is that instead of filling in each case with a test predicate assertion, we can fill it in
with a Benchmarkable element. We create these by taking a code expression we want to
benchmark (like a call to largestRectangle) and passing it to the whnf function.

main = do
 [l1, l2, l3, l4, l5, l6] <- mapM
 randomList [1, 10, 100, 1000, 10000, 100000]
 ...

-- Generate a list of a particular size
randomList :: Int -> IO FenceValues
randomList n = FenceValues <$> (sequence $ replicate n (randomRIO (1, 10000 :: Int)))

main :: IO ()
main = do
 [l1, l2, l3, l4, l5, l6] <- mapM
 randomList [1, 10, 100, 1000, 10000, 100000]
 defaultMain
 [bgroup "fences tests"
 [bench "Size 1 Test" $...
 , bench "Size 10 Test" $...
]
]

main :: IO ()
main = do
 [l1, l2, l3, l4, l5, l6] <- mapM
 randomList [1, 10, 100, 1000, 10000, 100000]
 defaultMain
 [bgroup "fences tests"
 [bench "Size 1 Test" $ whnf largestRectangle l1
 , bench "Size 10 Test" $ whnf largestRectangle l2
 , bench "Size 100 Test" $ whnf largestRectangle l3
 , bench "Size 1000 Test" $ whnf largestRectangle l4
 , bench "Size 10000 Test" $ whnf largestRectangle l5

That's all there is to it really! We're ready to run our benchmark now. We'd normally run all our
benchmarks with stack bench (or cabal bench if you're not using Stack). And you can run an
individual benchmark set similar to an individual test set:

But we can also compile our code with the --profile flag. This will automatically create a profiling
report with more information about our code. Note using profiling requires re-compiling ALL the
dependencies to use profiling as well. So you don't want to switch back and forth a lot.

 , bench "Size 100000 Test" $ whnf largestRectangle l6
]
]

>> stack build Testing:bench:fences-benchmark

>> stack build Testing:bench:fences-benchmark --profile
Benchmark fences-benchmark: RUNNING...
benchmarking fences tests/Size 1 Test
time 47.79 ns (47.48 ns .. 48.10 ns)
 1.000 R² (0.999 R² .. 1.000 R²)
mean 47.78 ns (47.48 ns .. 48.24 ns)
std dev 1.163 ns (817.2 ps .. 1.841 ns)
variance introduced by outliers: 37% (moderately inflated)

benchmarking fences tests/Size 10 Test
time 3.324 μs (3.297 μs .. 3.356 μs)
 0.999 R² (0.999 R² .. 1.000 R²)
mean 3.340 μs (3.312 μs .. 3.368 μs)
std dev 98.52 ns (79.65 ns .. 127.2 ns)
variance introduced by outliers: 38% (moderately inflated)

benchmarking fences tests/Size 100 Test
time 107.3 μs (106.3 μs .. 108.2 μs)
 0.999 R² (0.999 R² .. 0.999 R²)
mean 107.2 μs (106.3 μs .. 108.4 μs)
std dev 3.379 μs (2.692 μs .. 4.667 μs)
variance introduced by outliers: 30% (moderately inflated)

benchmarking fences tests/Size 1000 Test
time 8.724 ms (8.596 ms .. 8.865 ms)

So when we run this, we'll find something...troubling. It takes a looong time to run the final
benchmark on size 100000. On average, this case takes over 100 seconds...more than a minute
and a half! We can further take note of how the average run time increases based on the size of
the case. Let's pare down the data a little bit:

Each time we increase the size of the problem by a factor of 10, the time spent increased by a
factor closer to 100! This suggests our run time is O(n^2) (check out this guide if you are
unfamiliar with Big-O notation). We'd like to do better.

 0.998 R² (0.997 R² .. 0.999 R²)
mean 8.638 ms (8.560 ms .. 8.723 ms)
std dev 228.8 μs (193.6 μs .. 272.8 μs)

benchmarking fences tests/Size 10000 Test
time 909.2 ms (899.3 ms .. 914.1 ms)
 1.000 R² (1.000 R² .. 1.000 R²)
mean 915.1 ms (914.6 ms .. 915.8 ms)
std dev 620.1 μs (136.0 as .. 664.8 μs)
variance introduced by outliers: 19% (moderately inflated)

benchmarking fences tests/Size 100000 Test
time 103.9 s (91.11 s .. 117.3 s)
 0.997 R² (0.997 R² .. 1.000 R²)
mean 107.3 s (103.7 s .. 109.4 s)
std dev 3.258 s (0.0 s .. 3.702 s)
variance introduced by outliers: 19% (moderately inflated)

Benchmark fences-benchmark: FINISH

Size 1: 47.78 ns
Size 10: 3.340 μs (increased ~70x)
Size 100: 107.2 μs (increased ~32x)
Size 1000: 8.638 ms (increased ~81x)
Size 10000: 915.1 ms (increased ~106x)
Size 100000: 107.3 s (increased ~117x)

DETERMINING THE PROBLEM

So we want to figure out why our code isn't performing very well. Luckily, we already profiled our
benchmark!. This outputs a specific file that we can look at, called fences-benchmark.prof. It has
some very interesting results:

We see that we have two big culprits taking a lot of time. First, there is our function that
determines the minimum between a specific interval. The report is even more specific, calling out
the specific offending part of the function. We spend a lot of time getting the different values for a
specific interval. In second place, we have valueAtIndex. This means we also spend a lot of time
getting values out of our list.

First let's be glad we've factored our code well. If we had written our entire solution in one big
function, we wouldn't have any leads here. This makes it much easier for us to analyze the
problem. When examining the code, we see why both of these functions could produce O(n^2)
behavior.

Due to the number of recursive calls we make, we'll call each of these functions O(n) times. Then
when we call valueAtIndex, we use the (!!) operator on our linked list. This takes O(n) time.
Scanning the whole interval for the minimum height has the same effect. In the worst case, we
have to look at every element in the list! I'm hand waving a bit here, but that is the basic result.
When we call these O(n) pieces O(n) times, we get O(n^2) time total.

We can actually solve this problem in O(n log n) time, a dramatic improvement over the current
O(n^2). But we'll have to improve our data structures to accomplish this. First, we'll store our
values so that we can go from the index to the element in sub-linear time. This is easy. Second, we
have to determine the index containing the minimum element within an arbitrary interval. This is a
bit trickier to do in sub-linear time. We'll need a more advanced data structure. To see how this all
works, you'll need to check out part 3, the grand finale of this series!

COST CENTRE MODULE SRC %time %alloc
minimumHeightIndexValue.valsInInterval Lib src/Lib.hs:45:5-95 69.8 99.7
valueAtIndex Lib src/Lib.hs:51:1-74 29.3 0.0

CLIFF HANGER ENDING

As a reminder, you shold take a look at our mini-course on Stack. It'll teach you the basics of laying
out a project and running commands on it using the Stack tool. You should enroll in the Monday
Morning Haskell Academy to sign up! Once you know about Stack, it'll be a lot easier to try this
problem out for yourself!

In addition to Stack, recursion also featured pretty heavily in our solution here. If you've done any
amount of functional programming you've seen recursion in action. But if you want to solidify your
knowledge, you should download our Recursion Workbook! It has two chapters worth of content on
recursion and it has 10 practice problems you can work through! It also has a full test suite already,
so you can use incremental test driven development!

Revision #1
Created 11 March 2022 05:51:45 by gasick
Updated 11 March 2022 17:11:17 by gasick

