
Если вы видите что-то необычное, просто сообщите мне.

Welcome back to our series on the simplicity of Haskell's data declarations. In part 2, we looked at
how to express sum types in different languages. We saw that they fit very well within Haskell's
data declaration system. For Java and Python, we ended up using inheritance, which presents some
interesting benefits and drawbacks. We'll explore those more in part 4. But first, we should wrap
our heads around one more concept: parametric types.

We'll see how each of these languages allows for the concept of parametric types. In my view,
Haskell does have the cleanest syntax. But other compiled languages do pretty well to incorporate
the concept. Dynamic languages though, provide insufficient guarantees for my liking.

This all might seem a little wild if you haven't done any Haskell at all yet! Read our Liftoff Series to
get started!

As always, you can look at the code for these articles on our Github Repository! For this article you
can look at the Haskell example, or the Java code, or the Python example.

HASKELL PARAMETRIC TYPES Let's remember how easy it is to do parametric types in Haskell.
When we want to parameterize a type, we'll add a type variable after its name in the definition.
Then we can use this variable as we would any other type. Remember our Person type from the
first part? Here's what it looks like if we parameterize the occupation field.

Parameterized Types in
Haskell

data Person o = Person
 { personFirstName :: String
 , personLastName :: String
 , personEmail :: String
 , personAge :: Int
 , personOccupation :: o
 }

We add the o at the start, and then we can use o in place of our former String type. Now whenever
we use the Person type, we have to specify a type parameter to complete the definition.

When we define functions, we can use a specific version of our parameterized type if we want to
constrain it. We can also use a generic type if it doesn't matter.

Last of all, we can use a typeclass constraint on the parametric type if we only need certain
behaviors:

Java has a comparable concept called generics. The syntax for defining generic types is pretty
clean. We define a type variable in brackets. Then we can use that variable as a type freely
throughout the class definition.

data Occupation = Lawyer | Doctor | Engineer

person1 :: Person String
person1 = Person "Michael" "Smith" "msmith@gmail.com" 27 "Lawyer"

person2 :: Person Occupation
person2 = Person "Katie" "Johnson" "kjohnson@gmail.com" 26 Doctor

salesMessage :: Person Occupation -> String
salesMessage p = case personOccupation p of
 Lawyer -> "We'll get you the settlement you deserve"
 Doctor -> "We'll get you the care you need"
 Engineer -> "We'll build that app for you"

fullName :: Person o -> String
fullName p = personFirstName p ++ " " ++ personLastName p

sortOnOcc :: (Ord o) => [Person o] -> [Person o]
sortOnOcc = sortBy (\p1 p2 -> compare (personOccupation p1) (personOccupation p2))

JAVA GENERIC TYPES

There's a bit of a wart in how we pass constraints. This comes from the Java distinction of
interfaces from classes. Normally, when you define a class and state the subclass, you would use
the extends keyword. But when your class uses an interface, you use the implements keyword.

But with generic type constraints, you only use extends. You can chain constraints together with &.
But if one of the constraints is a subclass, it must come first.

public class Person<T> {
 private String firstName;
 private String lastName;
 private String email;
 private int age;
 private T occupation;

 public Person(String fn, String ln, String em, int age, T occ) {
 this.firstName = fn;
 this.lastName = ln;
 this.email = em;
 this.age = age;
 this.occupation = occ;
 }

 public T getOccupation() { return this.occupation; }
 public void setOccupation(T occ) { this.occupation = occ; }
 ...
}

enum Occupation {
 LAWYER,
 DOCTOR,
 ENGINEER
}

public static void main(String[] args) {
 Person<String> person1 = new Person<String>("Michael", "Smith", "msmith@gmail.com", 27, "Lawyer");
 Person<Occupation> person2 = new Person<Occupation>("Katie", "Johnson", "kjohnson@gmail.com", 26,
Occupation.DOCTOR);
}

public class Person<T extends Number & Comparable & Serializable> { In this example, our
template type T must be a subclass of Number. It must then implement the Comparable and
Serializable interfaces. If we mix the order up and put an interface before the parent class, it will
not compile:

public class Person<T extends Comparable & Number & Serializable> { C++ TEMPLATES For the
first time in this series, we'll reference a little bit of C++ code. C++ has the idea of "template
types" which are very much like Java's generics. Here's how we can create our user type as a
template:

There's a bit more overhead with C++ though. C++ function implementations are typically defined
outside the class definition. Because of this, you need an extra leading line for each of these
stating that T is a template. This can get a bit tedious.

One more thing I'll note from my experience with C++ templates. The error messages from
template types can be verbose and difficult to parse. For example, you could forget the template
line above. This alone could cause a very confusing message. So there's definitely a learning curve.
I've always found Haskell's error messages easier to deal with.

template <class T>
class Person {
public:
 string firstName;
 string lastName;
 string email;
 int age;
 T occupation;

 bool compareOccupation(const T& other);
};

template <class T>
bool Person::compareOccupation(const T& other) {
 ...
}

Since Python isn't compiled, there aren't type constraints when you construct an object. Thus,
there is no need for type parameters. You can pass whatever object you want to a constructor.
Take this example with our user and occupation:

PYTHON - THE WILD WEST!

class Person(object):

 # This definition hasn't changed!
 def __init__(self, fn, ln, em, age, occ):
 self.firstName = fn
 self.lastName = ln
 self.email = em
 self.age = age
 self.occupation = occ

stringOcc = "Lawyer"
person1 = Person(
 "Michael",
 "Smith",
 "msmith@gmail.com",
 27,
 stringOcc)

class Occupation(object):
 def __init__(self, name, location):
 self.name = name
 self.location = location

classOcc = Occupation("Software Engineer", "San Francisco")

Still works!
person2 = Person(
 "Katie",
 "Johnson",
 "kjohnson@gmail.com",
 26,

Of course, with this flexibility comes great danger. If you expect there are different types you might
pass for the occupation, your code must handle them all! Without compilation, it can be tricky to
know you can do this. Someone might see an instance of a "String" occupation and think they can
call string functions on it. But these functions won't work for other types!

So while you can do polymorphic code in Python, you're more limited. You shouldn't get too carried
away, because it is more likely to blow up in your face.

Now that we know about parametric types, we have more intuition for the idea of filling in type
holes. This will come in handy for part 4 as we look at Haskell's typeclass system for sharing
behaviors. We'll compare the object oriented notion of inheritance and Haskell's typeclasses. This
distinction gets to the core of why I've come to prefer Haskell as a language. You won't want to
miss it!

If these comparisons have intrigued you, you should give Haskell a try! Download our Beginners
Checklist to get started!

 classOcc)

people = [person1, person2]
for p in people:
 # This works. Both types of occupations are printable.
 # (Even if the Occupation output is unhelpful)
 print(p.occupation)

 # This won't work! Our "Occupation" class
 # doesn't work with "len"
 print(len(p.occupation))

CONCLUSION

Revision #1
Created 11 March 2022 06:04:59 by gasick
Updated 11 March 2022 17:11:17 by gasick

