
Если вы видите что-то необычное, просто сообщите мне.

Well to our series on Haskell and the Open AI Gym! The Open AI Gym is an open source project for
teaching the basics of reinforcement learning. It provides a framework for understanding how we
can make agents that evolve and learn. It's written in Python, but some of its core concepts work
very well in Haskell. So over the course of this series, we'll be implementing many of the main
ideas in our preferred language.

In this first part, we'll start exploring what exactly these core concepts are, so we'll stick to the
framework's native language. We'll examine what exactly an "environment" is and how we can
generalize the concept. If you already know some of the basics of Open AI Gym and the Frozen
Lake game, you should move on to part 2 of the series, where we'll start using Haskell!

We'll ultimately use machine learning to train our agents. So you'll want some guidance on how to
do that in Haskell. Read our Machine Learning Series and download our Tensor Flow guide to learn
more!

To start out our discussion of AI and games, let's go over the basic rules of one of the simplest
examples, Frozen Lake. In this game, our agent controls a character that is moving on a 2D "frozen
lake", trying to reach a goal square. Aside from the start square ("S") and the goal zone ("G"), each
square is either a frozen tile ("F") or a hole in the lake ("H"). We want to avoid the holes, moving
only on the frozen tiles. Here's a sample layout:

SFFF FHFH FFFH HFFG So a safe path would be to move down twice, move right twice, down again,
and then right again. What complicates the matter is that tiles can be "slippery". So each turn,

Open AI Gym Primer: Frozen
Lake

FROZEN LAKE

there's a chance we won't complete our move, and will instead move to a random neighboring tile.

Now let's see what it looks like for us to actually play the game using the normal Python code. This
will get us familiar with the main ideas of an environment. We start by "making" the environment
and setting up a loop where the user can enter their input move each turn:

There are several functions we can call on the environment to see it in action. First, we'll render it,
even before making our move. This lets us see what is going on in our console. Then we have to
step the environment using our move. The step function makes our move and provides us with 4
outputs. The primary ones we're concerned with are the "done" value and the "reward". These will
tell us if the game is over, and if we won.

We use numbers in our moves, which our program converts into the input space for the game. (0 =
Left, 1 = Down, 2 = Right, 3 = Up).

PLAYING THE GAME

import gym
env = gym.make('FrozenLake-v0')
env.reset()

while True:
 move = input("Please enter a move:")
 ...

while True:
 env.render()
 move = input("Please enter a move:")
 action = int(move)
 observation, reward, done, info = env.step(action)
 if done:
 print(reward)
 print("Episode finished")
 env.render()
 break

We can also play the game automatically, for several iterations. We'll select random moves by
using action_space.sample(). We'll discuss what the action space is in the next part. We can also
use reset on our environment at the end of each iteration to return the game to its initial state.

These are the basics of the game. Let's go over some of the details of how an environment works,
so we can start imagining how it will work in Haskell.

The first thing to understand about environments is that each environment has an "observation"
space and an "action" space. The observation space gives us a numerical representation of the
state of the game. This doesn't include the actual layout of our board, just the mutable state. For
our frozen lake example, this is only the player's current position. We could use two numbers for
the player's row and column. But in fact we use a single number, the row number multiplied by the
column number.

Here's an example where we print the observation after moving right twice, and then down. We
have to call reset before using an environment. Then calling this function gives us an observation
we can print. Then, after each step, the first return value is the new observation.

for i in range(20):
 observation = env.reset()
 for t in range(100):
 env.render()
 print(observation)
 action = env.action_space.sample()
 observation, reward, done, info = env.step(action)
 if done:
 print("Episode finished after {} timesteps".format(t + 1))
 break

env.close()

OBSERVATION AND ACTION
SPACES

So, with a 4x4 grid, we start out at position 0. Then moving right increases our position index by 1,
and moving down increases it by 4.

This particular environment uses a "discrete" environment space of size 16. So the state of the
game is just a number from 0 to 15, indicating where our agent is. More complicated games will
naturally have more complicated state spaces.

The "action space" is also discrete. We have four possible moves, so our different actions are the
integers from 0 to 3.

The observation space and the action space are important features of our game. They dictate the
inputs and outputs of the each game move. On each turn, we take a particular observation as

import gym
env = gym.make('FrozenLake-v0')
o = env.reset()
print(o)
o, _, _, _ = env.step(2)
print(o)
o, _, _, _ = env.step(2)
print(o)
o, _, _, _ = env.step(1)
print(o)

Console output
0
1
2
6

import gym
env = gym.make('FrozenLake-v0')
print(env.observation_space)
print(env.action_space)

Console Output
Discrete(16)
Discrete(4)

input, and produce an action as output. If we can do this in a numerical way, then we'll ultimately
be able to machine-learn the program.

Now we can start thinking about how to represent an environment in Haskell. Let's think about the
key functions and attributes we used when playing the game.

1. Observation space
2. Action space
3. Reset
4. Step
5. Render How would we represent these in Haskell? To start, we can make a type for the

different numeric spaces can have. For now we'll provide a discrete space option and a
continuous space option.

We don't know yet all the rest of the data our environment will hold. But we can start thinking
about certain functions for it. Resetting will take our environment and return a new environment
and an observation. Rendering will be an IO action.

TOWARDS HASKELL

data NumericSpace =
 Discrete Int |
 Continuous Float
Now we can make an Environment type with fields for these spaces. We'll give it parameters for the observation
type and the action type.

data Environment obs act = Environment
 { observationSpace :: NumericSpace
 , actionSpace :: NumericSpace
 ...
 }

resetEnv :: Environment obs act -> (obs, Environment obs act)

renderEnv :: Environment obs act -> IO ()

The step function is the most important. In Python, this returns a 4-tuple. We don't care about the
4th "info" element there yet. But we do care to return our environment type itself, since we're in a
functional language. So we'll return a different kind of 4-tuple.

It's also possible we'll use the state monad here instead, as that could be cleaner. Now this isn't the
whole environment obviously! We'd need to store plenty of unique internal state. But what we see
here is the start of a typeclass that we'll be able to generalize across different games. We'll see
how this idea develops throughout the series!

Hopefully you've got a basic idea now of what makes up an environment we can run. You can take
a look at part 2, where we'll push a bit further with our Haskell and implement Frozen Lake !

stepEnv :: Environment obs act -> act
 -> (obs, Float, Bool, Environment obs act)

CONCLUSION

Revision #1
Created 11 March 2022 06:39:54 by gasick
Updated 11 March 2022 17:11:16 by gasick

