
Если вы видите что-то необычное, просто сообщите мне.

So far in this series, the Frozen Lake example has been our basic tool. In part 2, we wrote it in
Haskell. We'd like to start training agents for this game. But first, we want to make sure we're set
up to generalize our idea of an environment.

So in this part, we're going to make another small example game. This time, we'll play Blackjack.
This will give us an example of an environment that needs a more complex observation state.
When we're done with this example, we'll be able to compare our two examples. The end goal is to
be able to use the same code to train an algorithm for either of them. You can find the code for this
part on Github here.

If you don't know the basic rules of casino blackjack, take a look here. Essentially, we have a deck
of cards, and each card has a value. We want to get as high a score as we can without exceeding
21 (a "bust"). Each turn, we want to either "hit" and add another card to our hand, or "stand" and
take the value we have.

After we get all our cards, the dealer must then draw cards under specific rules. The dealer must
"hit" until their score is 17 or higher, and then "stand". If the dealer busts or our score beats the
dealer, we win. If the scores are the same it's a "push".

Here's a basic Card type we'll work with to represent the card values, as well as their scores.

Open AI Gym: Blackjack

BASIC RULES

data Card =
 Two | Three | Four | Five |
 Six | Seven | Eight | Nine |
 Ten | Jack | Queen | King | Ace
 deriving (Show, Eq, Enum)

The Ace can count as 1 or 11. We account for this in our scoring functions:

As in Frozen Lake, we need to define types for our environment. The "action" type is
straightforward, giving only two options for "hit" and "stand":

cardScore :: Card -> Word
cardScore Two = 2
cardScore Three = 3
cardScore Four = 4
cardScore Five = 5
cardScore Six = 6
cardScore Seven = 7
cardScore Eight = 8
cardScore Nine = 9
cardScore Ten = 10
cardScore Jack = 10
cardScore Queen = 10
cardScore King = 10
cardScore Ace = 1

-- Returns the base sum, as well as a boolean if we have
-- a "usable" Ace.
baseScore :: [Card] -> (Word, Bool)
baseScore cards = (score, score <= 11 && Ace `elem` cards)
 where
 score = sum (cardScore <$> cards)

scoreHand :: [Card] -> Word
scoreHand cards = if hasUsableAce then score + 10 else score
 where
 (score, hasUsableAce) = baseScore cards

CORE ENVIRONMENT TYPES

data BlackjackAction = Hit | Stand
 deriving (Show, Eq, Enum)

Our observation is more complex than in Frozen Lake. We have more information that can guide us
than just knowing our location. We'll boil it down to three elements. First, we need to know our own
score. Second, we need to know if we have an Ace. This isn't clear from the score, and it can give
us more options. Last, we need to know what card the dealer is showing.

Now for our environment, we'll once again store the "current observation" as one of its fields.

The main fields are about the cards in play. We'll have a list of cards for our own hand. Then we'll
have the main deck to draw from. The dealer's cards will be a 3-tuple. The first is the "showing"
card. The second is the hidden card. And the third is a list for extra cards the dealer draws later.

The last pieces of this will be a boolean for whether the player has "stood", and a random
generator. The boolean helps us render the game, and the generator helps us reset and shuffle
without using IO.

data BlackjackObservation = BlackjackObservation
 { playerScore :: Word
 , playerHasAce :: Bool
 , dealerCardShowing :: Card
 } deriving (Show)

data BlackjackEnvironment = BlackjackEnvironment
 { currentObservation :: BlackjackObservation
 ...
 }

data BlackjackEnvironment = BlackjackEnvironment
 { currentObservation :: BlackjackObservation
 , playerHand :: [Card]
 , deck :: [Card]
 , dealerHand :: (Card, Card, [Card])
 ...
 }

data BlackjackEnvironment = BlackjackEnvironment
 { currentObservation :: BlackjackObservation
 , playerHand :: [Card]
 , deck :: [Card]

Now we can use these to write our main game functions. As in Frozen Lake, we'll want functions to
render the environment and reset it. We won't go over those in this article. But we will focus on the
core step function.

Our step function starts out simply enough. We retrieve our environment and analyze the action we
get.

Below, we'll write a function to play the dealer's hand. So for the Stand branch, we'll update the
state variable for the player standing, and call that helper.

When we hit, we need to determine the top card in the deck. We'll add this to our hand to get the
new player score. All this information goes into our new observation, and the new state of the
game.

 , dealerHand :: (Card, Card, [Card])
 , randomGenerator :: Rand.StdGen
 , playerHasStood :: Bool
 } deriving (Show)

PLAYING THE GAME

stepEnv :: (Monad m) => BlackjackAction ->
 StateT BlackjackEnvironment m (BlackjackObservation, Double, Bool)
stepEnv action = do
 bje <- get
 case action of
 Stand -> ...
 Hit -> ...

stepEnv action = do
 bje <- get
 case action of
 Stand -> do
 put $ bje { playerHasStood = True }
 playOutDealerHand
 Hit -> ...

Now we need to analyze the player's score. If it's greater than 21, we've busted. We return a
reward of 0.0 and we're done. If it's exactly 21, we'll treat that like a "stand" and play out the
dealer. Otherwise, we'll continue by returning False.

stepEnv action = do
 bje <- get
 case action of
 Stand -> ...
 Hit -> do
 let (topCard : remainingDeck) = deck bje
 pHand = playerHand bje
 currentObs = currentObservation bje
 newPlayerHand = topCard : pHand
 newScore = scoreHand newPlayerHand
 newObservation = currentObs
 { playerScore = newScore
 , playerHasAce = playerHasAce currentObs ||
 topCard == Ace}
 put $ bje { currentObservation = newObservation
 , playerHand = newPlayerHand
 , deck = remainingDeck }
 ...

stepEnv action = do
 bje <- get
 case action of
 Stand -> ...
 Hit -> do
 ...
 if newScore > 21
 then return (newObservation, 0.0, True)
 else if newScore == 21
 then playOutDealerHand
 else return (newObservation, 0.0, False)

PLAYING OUT THE DEALER

To wrap up the game, we need to give cards to the dealer until their score is high enough. So let's
start by getting the environment and scoring the dealer's current hand.

If the dealer's score is less than 17, we can draw the top card, add it to their hand, and recurse.

Now all that's left is analyzing the end conditions. We'll score the player's hand and compare it to
the dealer's. If the dealer has busted, or the player has the better score, we'll give a reward of 1.0.
If they're the same, the reward is 0.5. Otherwise, the player loses. In all cases, we return the
current observation and True as our "done" variable.

playOutDealerHand :: (Monad m) =>
 StateT BlackjackEnvironment m (BlackjackObservation, Double, Bool)
playOutDealerHand = do
 bje <- get
 let (showCard, hiddenCard, restCards) = dealerHand bje
 currentDealerScore = scoreHand (showCard : hiddenCard : restCards)

playOutDealerHand :: (Monad m) => StateT BlackjackEnvironment m (BlackjackObservation, Double, Bool)
playOutDealerHand = do
 ...
 if currentDealerScore < 17
 then do
 let (topCard : remainingDeck) = deck bje
 put $ bje { dealerHand =
 (showCard, hiddenCard, topCard : restCards)
 , deck = remainingDeck}
 playOutDealerHand
 else ...

playOutDealerHand :: (Monad m) => StateT BlackjackEnvironment m (BlackjackObservation, Double, Bool)
playOutDealerHand = do
 bje <- get
 let (showCard, hiddenCard, restCards) = dealerHand bje
 currentDealerScore = scoreHand
 (showCard : hiddenCard : restCards)
 if currentDealerScore < 17
 then ...
 else do
 let playerScore = scoreHand (playerHand bje)

We'll also need code for running a loop and playing the game. But that code though looks very
similar to what we used for Frozen Lake. This is a promising sign for our hopes to generalize this
with a type class. Here's a sample playthrough of the game. As inputs, 0 means "hit" and 1 means
"stand".

So in this first game, we start with a King and 9, and see the dealer has a 6 showing. We "stand",
and the dealer busts.

In this next example, we try to hit on 13, since the dealer has an Ace. We bust, and lose the game.

 currentObs = currentObservation bje
 if playerScore > currentDealerScore || currentDealerScore > 21
 then return (currentObs, 1.0, True)
 else if playerScore == currentDealerScore
 then return (currentObs, 0.5, True)
 else return (currentObs, 0.0, True)

ODDS AND ENDS

6 X

K 9
19 # Our current score
1 # Stand command

1.0 # Reward
Episode Finished

6 9 8 # Dealer's final hand
23 # Dealer's final (busted) score

K 9
19

A X

3 J

Of course, there are a few ways we could make this more complicated. We could do iterated
blackjack to allow card-counting. Or we could add advanced moves like splitting and doubling
down. But that's not necessary for our purposes. The main point is that we have two fully functional
games we can work with!

In part 4, we'll start digging into the machine learning process. We'll learn about Q-Learning with
the Open Gym in Python and translate those ideas to Haskell.

We left out quite a bit of code in this example, particularly around setup. Take a look at Github to
see all the details!

13
0

0.0
Episode Finished

A X

K 3 J
23

CONCLUSION

Revision #1
Created 11 March 2022 06:48:20 by gasick
Updated 11 March 2022 17:11:16 by gasick

