
Если вы видите что-то необычное, просто сообщите мне.

AI systems are beginning to impact our lives more and more. It's a very important element to how
software is being developed and will continue to be developed. But where does Haskell fit in this
picture?

In this series, we’ll go over the basic concepts of Tensor Flow, one of the most easier machine
learning frameworks to pick. We'll first try it out in Python (the most common language for TF), and
then we'll translate our code to Haskell. For some help on actually installing the Haskell Tensor
Flow library so you can write your own code, make sure to download our Haskell Tensor Flow
Guide!

If you're already a bit familiar with these bindings, you can move on to part 2. We'll see how we
can apply some advanced type system tricks to actually make our Tensor Flow code safer!

*Note this series will not be a general introduction to the concept of machine learning. There is a
fantastic series on Medium about that called Machine Learning is Fun! If you’re interested in
learning the basic concepts, I highly recommend you check out part 1 of that series. Many of the
ideas in my own article series will be a lot clearer with that background.

TENSORS Tensor Flow is a great name because it breaks the library down into the two essential
concepts. First up are tensors. These are the primary vehicle of data representation in Tensor Flow.
Low-dimensional tensors are actually quite intuitive. But there comes a point when you can’t really
visualize what’s going on, so you have to let the theoretical idea guide you.

In the world of big data, we represent everything numerically. And when you have a group of
numbers, a programmer’s natural instinct is to put those in an array.

Now what do you do if you have a lot of different arrays of the same size and you want to associate
them together? You make a 2-dimensional array (an array of arrays), which we also refer to as a

Haskell and Tensor Flow

[1.0, 2.0, 3.0, 6.7]

matrix.

Most programmers are pretty familiar with these concepts. Tensors take this idea and keep
extending it. What happens when you have a lot of matrices of the same size? You can group them
together as an array of matrices. We could call this a three-dimensional matrix. But "tensor" is the
term we’ll use for this data representation in all dimensions.

Every tensor has a degree. We could start with a single number. This is a tensor of degree 0. Then
a normal array is a tensor of degree 1. Then a matrix is a tensor of degree 2. Our last example
would be a tensor of degree 3. And you can keep adding these on to each other, ad infinitum.

Every tensor has a shape. The shape is an array representing the dimensions of the tensor. The
length of this array will be the degree of the tensor. So a number will have the empty list as its
shape. An array will have a list of length 1 containing the length of the array. A matrix will have a
list of length 2 containing its number of rows and columns. And so on. There are a few different
ways we can represent tensors in code, but we'll get to that in a bit.

The second important concept to understand is how Tensor Flow performs computations. Machine
learning generally involves simple math operations. A lot of simple math operations. Since the
scale is so large, we need to perform these operations as fast as possible. And we need to use
software and hardware that is optimized for these specific tasks. This necessitates having a low-
level code representation of what’s going on. This is easier to achieve in a language like C, instead
of Haskell or Python.

We could have the bulk of our code in Haskell, but perform the math in C using a Foreign Function
Interface. But these interfaces have a large overhead, so this is likely to negate most of the gains
we get from using C.

[[1.0, 2.0, 3.0, 6.7],
[5.0, 10.0, 3.0, 12.9],
[6.0, 12.0, 15.0, 13.6],
[7.0, 22.0, 8.0, 5.3]]

GO WITH THE FLOW

Tensor Flow’s solution to this problem is that we first build up a graph describing all our
computations. Then once we have described that, we "run" our graph using a "session". Thus it
performs the entire language conversion process at once, so the overhead is lower.

If this sounds familiar, it's because this is how actions tend to work in Haskell (in some sense). We
can, for instance, describe an IO action. And this action isn’t a series of commands that we execute
the moment they show up in the code. Rather, the action is a description of the operations that our
program will perform at some point. It’s also similar to the concept of Effectful programming.

So what does our computation graph look like? Well, each tensor is a node. Then we can make
other nodes for "operations" that take tensors as input. For instance, we can "add" two tensors
together, and this is another node. We’ll see in our example how we build up the computational
graph, and then run it.

#CODING TENSORS So at this point we should start examining how we actually create tensors in
our code. We’ll start by looking at how we do this in Python, since the concepts are a little easier to
understand that way. There are three types of tensors we’ll consider. The first are "constants".
These represent a set of values that do not change. We can use these values throughout our model
training process, and they'll be the same each time. Since we define the values for the tensor up
front, there’s no need to give any size arguments. But we will specify the datatype that we’ll use
for them.

Now what can we actually do with these tensors? Well for a quick sample, let’s try adding them.
This creates a new node in our graph that represents the addition of these two tensors. Then we
can "run" that addition node to see the result. To encapsulate all our information, we’ll create a
"Session":

import tensorflow as tf

node1 = tf.constant(3.0, dtype=tf.float32)
node2 = tf.constant(4.0, dtype=tf.float32)

import tensorflow as tf

node1 = tf.constant(3.0, dtype=tf.float32)
node2 = tf.constant(4.0, dtype=tf.float32)
additionNode = tf.add(node1, node2)

The next type of tensors are placeholders. These are values that we change each run. Generally,
we will use these for the inputs to our model. By using placeholders, we'll be able to change the
input and train on different values each time. When we "run" a session, we need to assign values to
each of these nodes.

We don’t know the values that will go into a placeholder, but we still assign the type of data at
construction. We can also assign a size if we like. So here’s a quick snippet showing how we
initialize placeholders. Then we can assign different values with each run of the application. Even
though our placeholder tensors don’t have values, we can still add them just as we could with
constant tensors.

The last type of tensor we’ll use are variables. These are the values that will constitute our
"model". Our goal is to find values for these parameters that will make our model fit the data well.

sess = tf.Session()
result = sess.run(additionNode)
print result

"""
Output:
7.0
"""

node1 = tf.placeholder(tf.float32)
node2 = tf.placeholder(tf.float32)
adderNode = tf.add(node1, node2)

sess = tf.Session()
result1 = sess.run(adderNode, {node1: 3, node2: 4.5 })
result2 = sess.run(adderNode, {node1: 2.7, node2: 8.9 })
print(result1)
print(result2)

"""
Output:
7.5
11.6
"""

We’ll supply a data type, as always. In this situation, we’ll also provide an initial constant value.
Normally, we’d want to use a random distribution of some kind. The tensor won’t actually take on
its value until we run a global variable initializer function. We’ll have to create this initializer and
then have our session object run it before we get going.

Now let’s use our variables to create a "model" of sorts. For this article we'll make a simple linear
model. Let’s create additional nodes for our input tensor and the model itself. We’ll let w be the
weights, and b be the "bias". This means we’ll construct our final value by w*x + b, where x is the
input.

Now, we want to know how good our model is. So let’s compare it to y, an input of our expected
values. We’ll take the difference, square it, and then use the reduce_sum library function to get our
"loss". The loss measures the difference between what we want our model to represent and what it
actually represents.

Each line here is a different tensor, or a new node in our graph. We’ll finish up our model by using
the built in GradientDescentOptimizer with a learning rate of 0.01. We’ll set our training step as
attempting to minimize the loss function.

w = tf.Variable([3], dtype=tf.float32)
b = tf.Variable([1], dtype=tf.float32)

sess = tf.Session()
init = tf.global_variables_initializer()
sess.run(init)

w = tf.Variable([3], dtype=tf.float32)
b = tf.Variable([1], dtype=tf.float32)
x = tf.placeholder(dtype=tf.float32)
linear_model = w * x + b

w = tf.Variable([3], dtype=tf.float32)
b = tf.Variable([1], dtype=tf.float32)
x = tf.placeholder(dtype=tf.float32)
linear_model = w * x + b
y = tf.placeholder(dtype=tf.float32)
squared_deltas = tf.square(linear_model - y)
loss = tf.reduce_sum(squared_deltas)

Now we’ll run the session, initialize the variables, and run our training step 1000 times. We’ll pass a
series of inputs with their expected outputs. Let's try to learn the line y = 5x - 1. Our expected
output y values will assume this.

At the end we print the weights and bias, and we see our results!

So we can see that our learned values are very close to the correct values of 5 and -1!

So now at long last, I’m going to get into some of the details of how we apply these tensor
concepts in Haskell. Like strings and numbers, we can’t have this one "Tensor" type in Haskell,
since that type could really represent some very different concepts. For a deeper look at the tensor
types we’re dealing with, check out our in depth guide.

In the meantime, let’s go through some simple code snippets replicating our efforts in Python.
Here’s how we make a few constants and add them together. Do note the "overloaded lists"
extension. It allows us to represent different types with the same syntax as lists. We use this with
both Shape items and Vectors:

optimizer = tf.train.GradientDescentOptimizer(0.01)
train = optimizer.minimize(loss)

sess = tf.Session()
init = tf.global_variables_initializer()
sess.run(init)
for i in range(1000):
 sess.run(train, {x: [1, 2, 3, 4], y: [4,9,14,19]})

print(sess.run([W,b]))

[array([4.99999475], dtype=float32), array([-0.99998516], dtype=float32)]

REPRESENTING TENSORS IN
HASKELL

We use the constant function, which takes a Shape and then the value we want. We’ll create our
addition node and then run it to get the output, which is a vector with a single float. We wrap
everything in the runSession function. This encapsulates the initialization and running actions we
saw in Python.

Now suppose we want placeholders. This is a little more complicated in Haskell. We’ll be using two
placeholders, as we did in Python. We’ll initialized them with the placeholder function and a shape.
We’ll take arguments to our function for the input values. To actually pass the parameters to fill in
the placeholders, we have to use what we call a "feed".

We know that our adderNode depends on two values. So we’ll write our run-step as a function that
takes in two "feed" values, one for each placeholder. Then we’ll assign those feeds to the proper
nodes using the feed function. We’ll put these in a list, and pass that list as an argument to
runWithFeeds. Then, we wrap up by calling our run-step on our input data. We’ll have to encode
the raw vectors as tensors though.

{-# LANGUAGE OverloadedLists #-}

import Data.Vector (Vector)
import TensorFlow.Ops (constant, add)
import TensorFlow.Session (runSession, run)

runSimple :: IO (Vector Float)
runSimple = runSession $ do
 let node1 = constant [1] [3 :: Float]
 let node2 = constant [1] [4 :: Float]
 let additionNode = node1 `add` node2
 run additionNode

main :: IO ()
main = do
 result <- runSimple
 print result

{-
Output:
[7.0]
-}

Now we’ll wrap up by going through the simple linear model scenario we already saw in Python.
Once again, we’ll take two vectors as our inputs. These will be the values we try to match. Next,
we’ll use the initializedVariable function to get our variables. We don’t need to call a global variable
initializer. But this does affect the state of the session. Notice that we pull it out of the monad
context, rather than using let. (We also did for placeholders.)

import TensorFlow.Core (Tensor, Value, feed, encodeTensorData)
import TensorFlow.Ops (constant, add, placeholder)
import TensorFlow.Session (runSession, run, runWithFeeds)

import Data.Vector (Vector)

runPlaceholder :: Vector Float -> Vector Float -> IO (Vector Float)
runPlaceholder input1 input2 = runSession $ do
 (node1 :: Tensor Value Float) <- placeholder [1]
 (node2 :: Tensor Value Float) <- placeholder [1]
 let adderNode = node1 `add` node2
 let runStep = \node1Feed node2Feed -> runWithFeeds
 [feed node1 node1Feed
 , feed node2 node2Feed
]
 adderNode
 runStep (encodeTensorData [1] input1) (encodeTensorData [1] input2)

main :: IO ()
main = do
 result1 <- runPlaceholder [3.0] [4.5]
 result2 <- runPlaceholder [2.7] [8.9]
 print result1
 print result2

{-
Output:
[7.5]
[11.599999]
-}

import TensorFlow.Core (Tensor, Value, feed, encodeTensorData, Scalar(..))
import TensorFlow.Ops (constant, add, placeholder, sub, reduceSum, mul)

Next, we’ll make our placeholders and linear model. Then we’ll calculate our loss function in much
the same way we did before. Then we’ll use the same feed trick to get our placeholders plugged in.

Finally, we’ll run our training step 1000 times on our input data. Then we’ll run our model one more
time to pull out the values of our weights and bias. Then we’re done!

import TensorFlow.GenOps.Core (square)
import TensorFlow.Variable (readValue, initializedVariable, Variable)
import TensorFlow.Session (runSession, run, runWithFeeds)
import TensorFlow.Minimize (gradientDescent, minimizeWith)

import Control.Monad (replicateM_)
import qualified Data.Vector as Vector
import Data.Vector (Vector)

runVariable :: Vector Float -> Vector Float -> IO (Float, Float)
runVariable xInput yInput = runSession $ do
 let xSize = fromIntegral $ Vector.length xInput
 let ySize = fromIntegral $ Vector.length yInput
 (w :: Variable Float) <- initializedVariable 3
 (b :: Variable Float) <- initializedVariable 1
 ...

runVariable :: Vector Float -> Vector Float -> IO (Float, Float)
 ...
 (x :: Tensor Value Float) <- placeholder [xSize]
 let linear_model = ((readValue w) `mul` x) `add` (readValue b)
 (y :: Tensor Value Float) <- placeholder [ySize]
 let square_deltas = square (linear_model `sub` y)
 let loss = reduceSum square_deltas
 trainStep <- minimizeWith (gradientDescent 0.01) loss [w,b]
 let trainWithFeeds = \xF yF -> runWithFeeds
 [feed x xF
 , feed y yF
]
 trainStep
...

Hopefully this article gave you a taste of some of the possibilities of Tensor Flow in Haskell. We saw
a quick introduction to the fundamentals of Tensor Flow. We saw three different kinds of tensors.
We then saw code examples both in Python and in Haskell. Finally, we went over a very quick
example of a simple linear model and saw how we could learn values to fit that model.

Now that we've got the basics down, we're going to spice things up a lot! In part 2 we'll explore the
question of program safety. We'll see that our Haskell code is not necessarily any better than the
Python code! But then we'll see how we can use some awesome dependent type techniques to
change this!

If you want more details on running this Tensor Flow code yourself, you should check out Haskell
Tensor Flow Guide! It will walk you through using the Tensor Flow library as a dependency and
getting a basic model running!

runVariable :: Vector Float -> Vector Float -> IO (Float, Float)
...
 replicateM_ 1000
 (trainWithFeeds (encodeTensorData [xSize] xInput) (encodeTensorData [ySize] yInput))
 (Scalar w_learned, Scalar b_learned) <- run (readValue w, readValue b)
 return (w_learned, b_learned)

main :: IO ()
main = do
 results <- runVariable [1.0, 2.0, 3.0, 4.0] [4.0, 9.0, 14.0, 19.0]
 print results

{-
Output:
(4.9999948,-0.99998516)
-}

CONCLUSION

Revision #1
Created 11 March 2022 06:26:51 by gasick
Updated 11 March 2022 17:11:16 by gasick

