Ecnn Bbl BUAUTE YTO-TO HEOObIYHOE, MPOCTO coobLLMTE MHe.

Grenade and Deep Learning

In part 2 and part 3 of this series, we explored some of the most complex topics in Haskell. We
examined potential runtime failures that can occur when using Tensor Flow. These included
mismatched dimensions and missing placeholders. In an ideal world, we would catch these issues
at compile time instead. At its current stage, the Haskell Tensor Flow library doesn't support that.

But we demonstrated that it is possible to do this by using dependent types.

If you want to explore coding with the Haskell Tensor Flow library yourself, make sure you
download our Guide. It'll give you a lot of tips on what dependencies you need and how to install

everything!

Now, I'm still very much of a novice at dependent types, so the solutions | presented were rather
clunky. In this final part, I'll show a better example of this concept from a different library. The
Grenade library uses dependent types everywhere. It allows us to build verifiably-valid neural
networks with extreme concision. Since it's so easy to build a larger network, Grenade can be a
powerful tool for deep learning! So let's dive in and see what it's all about! The code for this part is

on the grenade branch of our Github repository.

SHAPES AND LAYERS

The first thing to learn with this library is the twin concepts of Shapes and Layers. Shapes are best
compared to tensors from Tensor Flow, except that they exist at the type level. In Tensor Flow we
could build tensors with arbitrary dimensions. Grenade currently only supports up to three
dimensions. So the different shape types either start with D1, D2, or D3, depending on the
dimensionality of the shape. Then each of these type constructors take a set of natural number

parameters. So the following are all valid “Shape” types within Grenade:

D15
D2 412

D3 8102

The first represents a vector with 5 elements. The second represents a matrix with 4 rows and 12
columns. And the third represents an 8x10x2 matrix (or tensor, if you like). The different numbers
represent those values at the type level, not the term level. If this seems confusing, here's a good
tutorial that goes into more depth about the basics of dependent types. The most important idea is
that something of type D1 5 can only have 5 elements. A vector of 4 or 6 elements will not type-

check.

So now that we know about shapes, let's examine layers. Layers describe relationships between
our shapes. They encapsulate the transformations that happen on our data. The following are all

valid layer types:

Relu
FullyConnected 10 20
Convolution1105511

The layer Relu describes a layer that takes in data of any kind of shape and outputs the same
shape. In between, it applies the relu activation function to the input data. Since it doesn't change

the shape, it doesn't need any parameters.

A FullyConnected layer represents the canonical layer of a neural network. It has two parameters,
one for the number of input neurons and one for the number of output neurons. In this case, the

layer will take 10 inputs and produce 20 outputs.

A Convolution layer represents a 2D convolution for our neural network. This particular example

has 1 input feature, 10 output features, uses a 5x5 patch size, and a 1x1 patch offset.

DESCRIBING A NETWORK

Now that we have a basic grasp on shapes and layers, we can see how they fit together to create a
full network. A network type has two type parameters. The second parameter is a list of the shapes
that our data takes at any given point throughout the network. The first parameter is a list of the
layers representing the transformations on the data. So let's say we wanted to describe a very

simple network. It will take 4 inputs and produce 10 outputs using a fully connected layer. Then it

will perform an Relu activation. This network looks like this:

type SimpleNetwork = Network
'[FullyConnected 4 10, Relu]
' 'D1 4, 'D1 10, 'D1 10]

The apostrophes in front of the lists and D1 terms indicated that these are promoted constructors.
So they are types instead of terms. To “read” this type, we start with the first data format. We go
to each successive data format by applying the transformation layer. So for instance we start with
a 4-vector, and transform it into a 10-vector with a fully-connected layer. Then we transform that
10-vector into another 10-vector by applying relu. That's all there is to it! We could apply another

FullyConnected layer onto this that will have 3 outputs like so:

type SimpleNetwork = Network
'[FullyConnected 4 10, Relu, FullyConnected 10 3]
'l'D1 4, 'D1 10, 'D1 10, 'D1 3]

Let's look at the MNIST digit recognition problem to see a more complicated example. We'll start
with a 28x28 image of data. Then we'll perform the convolution layer | mentioned above. This gives
us a 3-dimensional tensor of size 24x24x10. Then we can perform 2x2 max pooling on this,

resulting in a 12x12x10 tensor. Finally, we can apply an Relu layer, which keeps it at the same size:

type MNISTStart = MNISTStart
'[Convolution 1 1055 1 1, Pooling 2 2 2 2, Relu]
'D2 28 28, D324 2410,D3121210,D312 12 10]

Here's what a full MNIST example might look like (per the README on the library's Github page):

type MNIST = Network
' Convolution110551 1, Pooling2 222, Relu
, Convolution 10 16 55 1 1, Pooling 2 2 2 2, FlattenLayer, Relu
, FullyConnected 256 80, Logit, FullyConnected 80 10, Logit]
'l 'D2 28 28, 'D3 24 24 10, 'D3 12 12 10,'D3 1212 10
,'D38816,'D3 4416, 'D1 256, 'D1 256
,'D1 80, 'D1 80, 'D1 10, 'D1 10]

This is a much simpler and more concise description of our network than we can get in Tensor

Flow! Let's examine the ways in which the library uses dependent types to its advantage.

THE MAGIC OF DEPENDENT
TYPES

Describing our network as a type seems like a strange idea if you've never used dependent types

before. But it gives us a couple great perks!

The first major win we get is that it is very easy to generate the starting values of our network.
Since it has a specific type, we can let type inference guide us! We don't need any term level code
that is specific to the shape of our network. All we need to do is attach the type signature and call

randomNetwork!

randomSimple :: MonadRandom m => m SimpleNetwork

randomSimple = randomNetwork
This will give us all the initial values we need, so we can get going!

The second (and more important) win is that we can't build an invalid network! Suppose we try to
take our simple network and somehow format it incorrectly. For instance, we could say that instead

of the input shape being of size 4, it's of size 7:

type SimpleNetwork = Network
'[FullyConnected 4 10, Relu, FullyConnected 10 3]
'1'D17,'D110, 'D1 10, "'D1 3]

-- ™ Notice this 7

This will result in a compile error, since there is a mismatch between the layers. The first layer

expects an input of 4, but the first data format is of length 7!

Could not deduce (Layer (FullyConnected 4 10) (‘D1 7) (‘D1 10))
arising from a use of 'randomNetwork’
from the context: MonadRandom m
bound by the type signature for:
randomSimple :: MonadRandom m => m SimpleNetwork

at src/lrisGrenade.hs:29:1-48

In other words, it notices that the chain from D1 7 to D1 10 using a FullyConnected 4 10 layer is
invalid. So it doesn't let us make this network. The same thing would happen if we made the layers
themselves invalid. For instance, we could make the output and input of the two fully-connected

layers not match up:

-- We changed the second to take 20 as the number of input elements.
type SimpleNetwork = Network

'[FullyConnected 4 10, Relu, FullyConnected 20 3]

' 'D1 4,'D1 10, 'D1 20, 'D1 3]

{- /Users/jamesbowen/HTensor/src/IrisGrenade.hs:30:16: error:
e Could not deduce (Layer (FullyConnected 20 3) (‘D1 10) (‘D1 3))
arising from a use of 'randomNetwork’
from the context: MonadRandom m
bound by the type signature for:
randomSimple :: MonadRandom m => m SimpleNetwork
at src/lrisGrenade.hs:29:1-48
-}

So Grenade makes our program much safer by providing compile time guarantees about our

network's validity. Runtime errors due to dimensionality are impossible!

TRAINING THE NETWORK ON
IRIS

Now let's do a quick run-through of how we actually train this neural network. We'll use the Iris

data set. We'll use the following steps:

Write the network type and generate a random network from it Read our input data into a format

that Grenade uses Write a function to run a training iteration. Run it!

1. WRITE THE NETWORK TYPE AND
GENERATE NETWORK

So we've already done this first step for the most part. We'll adjust the names a little bit though.
Note that I'll include the imports list as an appendix to the post. Also, the code is on the grenade

branch of my Haskell Tensor Flow repository in IrisGrenade.hs!

type IrisNetwork = Network
'[FullyConnected 4 10, Relu, FullyConnected 10 3]
''D1 4, 'D1 10, 'D1 10, 'D1 3]

randomlris :: MonadRandom m => m IrisNetwork

randomlris = randomNetwork

runlris :: FilePath -> FilePath -> 10 ()
runlris trainingFile testingFile = do

initiaINetwork <- randomlris

2. TAKE IN OUR INPUT DATA

The readlrisFromFile function will take care of getting our data into a vector format. Then we'll
make a dependent type called IrisRow, which uses the S type. This S type is a container for a
shape. We want our input data to use D1 4 for the 4 input features. Then our output data should

use D1 3 for the three possible categories.

-- Dependent type on the dimensions of the row

type IrisRow = (S (‘D1 4), S (‘D1 3))

If we have malformed data, the types will not match up, so we'll need to return a Maybe to ensure
this succeeds. Note that we normalize the data by dividing by 8. This puts all the data between 0

and 1 and makes for better training results. Here's how we parse the data:

parseRecord :: IrisRecord -> Maybe IrisRow
parseRecord record = case (input, output) of
(Just i, Just 0) -> Just (i, 0)
_-> Nothing
where
input = fromStorable $ VS.fromList $ float2Double <$>
[field1 record / 8.0, field2 record / 8.0, field3 record / 8.0, field4 record / 8.0]

output = oneHot (fromlintegral $ label record)

Then we incorporate these into our main function:

runlris :: FilePath -> FilePath -> 10 ()

runlris trainingFile testingFile = do
initialNetwork <- randomlris
trainingRecords <- readlrisFromFile trainingFile

testRecords <- readlrisFromFile testingFile

let trainingData = mapMaybe parseRecord (V.toList trainingRecords)

let testData = mapMaybe parseRecord (V.toList testRecords)

-- Catch if any were parsed as Nothing
if length trainingData /= length trainingRecords || length testData /= length testRecords
then putStrLn "Hmmm there were some problems parsing the data"

else ...

3. WRITE A FUNCTION TO TRAIN
THE INPUT DATA

This is a multi-step process. First we'll establish our learning parameters. We'll also write a function

that will allow us to call the train function on a particular row element:

learningParams :: LearningParameters

learningParams = LearningParameters 0.01 0.9 0.0005

-- Train the network!

trainRow :: LearningParameters -> IrisNetwork -> IrisRow -> IrisNetwork

trainRow Ip network (input, output) = train Ip network input output

Next we'll write two more helper functions that will help us test our results. The first will take the
network and a test row. It will transform it into the predicted output and the actual output of the
network. The second function will take these outputs and reverse the oneHot process to get the

label out (0, 1, or 2).

-- Takes a test row, returns predicted output and actual output from the network.
testRow :: IrisNetwork -> IrisRow -> (S (‘D1 3), S (‘D1 3))
testRow net (rowlnput, predictedOutput) = (predictedOutput, runNet net rowlnput)

-- Goes from probability output vector to label
getLabels :: (S ('D1 3), S ('D1 3)) -> (Int, Int)
getlLabels (S1D predictedLabel, S1D actualOutput) =

(maxIindex (extract predictedLabel), maxindex (extract actualOutput))

Finally we'll write a function that will take our training data, test data, the network, and an iteration
number. It will return the newly trained network, and log some results about how we're doing. We'll
first take only a sample of our training data and adjust our parameters so that learning gets slower.

Then we'll train the network by folding over the sampled data.

run :: [IrisRow] -> [IrisRow] -> IrisNetwork -> Int -> 10 IrisNetwork
run trainData testData network iterationNum = do
sampledRecords <- V.tolList <$> chooseRandomRecords (V.fromList trainData)
-- Slowly drop the learning rate
let revisedParams = learningParams
{ learningRate = learningRate learningParams * 0.99 ~ iterationNum}

let newNetwork = foldl' (trainRow revisedParams) network sampledRecords

Then we'll wrap up the function by looking at our test data, and seeing how much we got right!

run :: [IrisRow] -> [IrisRow] -> IrisNetwork -> Int -> 10 IrisNetwork
run trainData testData network iterationNum = do
sampledRecords <- V.toList <$> chooseRandomRecords (V.fromList trainData)
-- Slowly drop the learning rate
let revisedParams = learningParams

{ learningRate = learningRate learningParams * 0.99 ~ iterationNum?}

let newNetwork = foldl' (trainRow revisedParams) network sampledRecords
let labelVectors = fmap (testRow newNetwork) testData

let labelValues = fmap getLabels labelVectors

let total = length labelValues

let correctEntries = length $ filter ((==) <$> fst <*> snd) labelValues
putStrLn $ "lteration: " ++ show iterationNum

putStrLn $ show correctEntries ++ " correct out of: " ++4 show total

return newNetwork

4. RUN IT!

We'll call this now from our main function, iterating 100 times, and we're done!

runlris :: FilePath -> FilePath -> 10 ()

runlris trainingFile testingFile = do

if length trainingData /= length trainingRecords || length testData /= length testRecords
then putStrLn "Hmmm there were some problems parsing the data"

else foldM_ (run trainingData testData) initialNetwork [1..100]

COMPARING TO TENSOR
FLOW

So now that we've looked at a different library, we can consider how it stacks up against Tensor
Flow. So first, the advantages. Grenade's main advantage is that it provides dependent type
facilities. This means it is more difficult to write incorrect programs. The basic networks you build
are guaranteed to have the correct dimensionality. Additionally, it does not use a “placeholders”
system, so you can avoid those kinds of errors too. This means you're likely to have fewer runtime

bugs using Grenade.

Concision is another major strong point. The training code got a bit involved when translating our

data into Grenade's format. But it's no more complicated than Tensor Flow. When it comes down to

the exact definition of the network itself, we do this in only a few lines with Grenade. It's
complicated to understand what those lines mean if you are new to dependent types. But after

seeing a few simple examples you should be able to follow the general pattern.

Of course, none of this means that Tensor Flow is without its advantages. Tensor Flow has much
better logging utilities. The Tensor Board application will then give you excellent visualizations of
this data. It is somewhat more difficult to get intermediate log results with Grenade. There is not
too much transparency (that | have found at least) into the inner values of the network. The
network types are composable though. So it is possible to get intermediate steps of your operation.
But if you break your network into different types and stitch them together, you will remove some

of the concision of the network.

Also, Tensor Flow also has a much richer ecosystem of machine learning tools to access. Grenade
is still limited to a subset of the most common machine learning layers, like convolution and max
pooling. Tensor Flow's API allows approaches like support vector machines and linear models. So

Tensor Flow offers you more options.

CONCLUSION

Grenade provides some truly awesome facilities for building a concise neural network. A Grenade
program can demonstrate at compile time that the network is well formed. It also allows an
incredibly concise way to define what layers your neural network has. It doesn't have the Google
level support that Tensor Flow does. So it lacks many cool features like logging and visualizations.

But it is quite a neat library for its scope.

This concludes our series on Haskell and machine learning! If you want to get started writing some
code yourself, the best place to start would be our Haskell Tensor Flow Guide. It will walk you

through a lot of the tricks and gotchas when first getting Tensor Flow to work on your system. You
can also take a look at the Github repository and examine all the different code examples we used

in this series.

APPENDIX: COMPILER
EXTENSIONS AND IMPORTS

{-# LANGUAGE DataKinds #-}
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE TupleSections #-}
{-# LANGUAGE GADTs #-}

import Control.Monad (foldM_)

import Control.Monad.Random (MonadRandom)
import Control.Monad.l0.Class (liftlO)

import Data.Foldable (foldl')

import Data.Maybe (mapMaybe)

import qualified Data.Vector.Storable as VS

import qualified Data.Vector as V

import GHC.Float (float2Double)

import Grenade

import Grenade.Core.LearningParameters (LearningParameters(..))

import Grenade.Core.Shape (fromStorable)

import Grenade.Utils.OneHot (oneHot)

import Numeric.LinearAlgebra (maxIndex)

import Numeric.LinearAlgebra.Static (extract)

import Processing (IrisRecord(..), readlrisFromFile, chooseRandomRecords)
Revision #1

Created 11 March 2022 06:35:59 by gasick
Updated 11 March 2022 17:11:16 by gasick

