
Если вы видите что-то необычное, просто сообщите мне.

In part 3 of this series, we learned a few more complexities about how Elm works. We examined
how to bridge Elm types and Haskell types using the elm-bridge library. We also saw a couple basic
ways to incorporate effects into our Elm application. We saw how to use a random generator and
how to send HTTP requests.

These forced us to stretch our idea of what our program was doing. Our original Todo application
only controlled a static page with the sandbox function. But this new program used element to
introduce effects into our program structure.

But there's still another level for us to get to. Pretty much any web app will need many pages, and
we haven't seen what navigation looks like in Elm. To conclude this series, let's see how we
incorporate different pages. We'll need to introduce a couple more components into our application
for this.

To see the code for this part in action, check out our Github repository! You'll want to look at the
ElmNavigation folder.

Now you might be thinking navigation should be simple. After all, we can use normal HTML
elements on our page, including the a element for links. So we'd set up different HTML files in our
project and use routes to dictate which page to visit. Before Elm 0.19, this was all you would do.

But this approach has some key performance weaknesses. Clicking a link will always lead to a page
refresh which can be disrupting for the user. This approach will also lead us to do a lot of redundant
loading of our library code. Each new page will have to reload the generated Javascript for
Data.String, for example. The latest version of Elm has a new solution for this that fits within the
Elm architecture.

Elm Part 4: Navigation

SIMPLE NAVIGATION

In our previous articles, we described our whole application using the element function. But now it's
time to evolve from that definition. The application function provides us the tools we need to build
something bigger. Let's start by looking at its type signature (see the appendix at the bottom for
imports):

There are a couple new fields to this application function. But we can start by looking at the
changes to what we already know. Our init function now takes a couple extra parameters, the Url
and the Key. Getting a Url when our app launches means we can display different content
depending on what page our users visit first. The Key is a special navigation tool we get when our
app starts that helps us in routing. We need it for sending our own navigation commands.

Our view and update functions haven't really changed their types. All that's new is the view
produces Document instead of only Html. A Document is a wrapper that lets us add a title to our
web page, nothing scary. The subscriptions field has the same type (and we'll still ignore it for the
most part).

This brings us to the new fields, onUrlRequest and onUrlChange. These intercept events that can
change the page URL. We use onUrlChange to update our page when a user changes the URL at
the top bar. Then we use onUrlRequest to deal with a links the user clicks on the page.

AN APPLICATION

application :
 { init : flags -> Url -> Key -> (model, Cmd msg)
 , view : model -> Document msg
 , update : msg -> model -> (model, Cmd msg)
 , subscriptions : model -> Sub msg
 , onUrlRequest : UrlRequest -> msg
 , onUrlChange : Url -> msg
 }
 -> Program flags model msg

BASIC SETUP

Let's see how all these work by building a small dummy application. We'll have three pages,
arbitrarily titled "Contents", "Intro", and "Conclusion". Our content will just be a few links allowing
us to navigate back and forth. Let's start off with a few simple types. For our program state, we
store the URL so we can configure the page we're on. We also store the navigation key because we
need it to push changes to the page. Then for our messages, we'll have constructors for URL
requests and changes:

When we initialize this application, we'll pass the URL and Key through to our state. We'll always
start the user at the contents page. We cause a transition with the pushUrl command, which
requires we use the navigation key.

Now we can start filling in our application. We've got message types corresponding to the URL
requests and changes, so it's easy to fill those in.

type AppState = AppState
 { url: Url
 , navKey : Key
 }

type AppMessage =
 NoUpdate |
 ClickedLink UrlRequest |
 UrlChanged Url

appInit : () -> Url -> Key -> (AppState, Cmd AppMessage)
appInit _ url key =
 let st = AppState {url = url, navKey = key}
 in (st, pushUrl key "/contents")

UPDATING THE URL

main : Program () AppState AppMessage
main = Browser.application
 { init : appInit
 , view = appView
 , update = appUpdate

Our subscriptions, once again, will be Sub.none. So we're now down to filling in our update and
view functions.

The first real business of our update function is to handle link clicks. For this, we have to break the
UrlRequest down into its Internal and External cases:

Internal requests go to pages within our application. External requests go to other sites. We have
to use different commands for each of these. As we saw in the initialization, we use pushUrl for
internal requests. Then external requests will use the load function from our navigation library.

Once the URL has changed, we'll have another message. The only thing we need to do with this
one is update our internal state of the URL.

 , subscriptions = appSubscriptions
 , onUrlRequest = ClickedLink -- Use the message!
 , onUrlChanged = UrlChanged
 }

appUpdate : AppMessage -> AppState -> (AppState, Cmd AppMessage)
appUpdate msg (AppState s) = case msg of
 NoUpdate -> (AppState s, Cmd.none)
 ClickedLink urlRequest -> case urlRequest of
 Internal url -> …
 External href -> ...

appUpdate : AppMessage -> AppState -> (AppState, Cmd AppMessage)
appUpdate msg (AppState s) = case msg of
 NoUpdate -> (AppState s, Cmd.none)
 ClickedLink urlRequest -> case urlRequest of
 Internal url -> (AppState s, pushUrl s.navKey (toString url))
 External href -> (AppState s, load href)

appUpdate : AppMessage -> AppState -> (AppState, Cmd AppMessage)
appUpdate msg (AppState s) = case msg of
 NoUpdate -> (AppState s, Cmd.none)
 ClickedLink urlRequest -> …
 UrlChanged url -> (AppState {s | url = url}, Cmd.None)

Now our application's internal logic is all set up. All that's left is the view! First let's write a couple
helper functions. The first of these will parse our URL into a page so we know where we are. The
second will create a link element in our page:

Finally let's fill in a view function by applying these:

ROUNDING OUT THE VIEW

type Page =
 Contents |
 Intro |
 Conclusion |
 Other

parseUrlToPage : Url -> Page
parseUrlToPage url =
 let urlString = toString url
 in if contains "/contents" urlString
 then Contents
 else if contains "/intro" urlString
 then Intro
 else if contains "/conclusion" urlString
 then Conclusion
 else Other

link : String -> Html AppMessage
link path = a [href path] [text path]

appView : AppState -> Document AppMessage
appView (AppState st) =
 let body = case parseUrlToPage st.url of
 Contents -> div []
 [link "/intro", br [] [], link "/conclusion"]
 Intro -> div []
 [link "/contents", br [] [], link "/conclusion"]
 Conclusion -> div []

And now we can navigate back and forth among these pages with the links!

In this last part of our series, we completed the development of our Elm skills. We learned how to
use an application to achieve the full power of a web app and navigate between different pages.
There's plenty more depth we can get into with designing an Elm application. For instance, how do
you structure your message types across your different pages? What kind of state do you use to
manage your user's experience. These are interesting questions to explore as you become a better
web developer.

And you'll also want to make sure your backend skills are up to snuff as well! Read our Haskell Web
Series for more details on that! You can also download our Production Checklist!

 [link "/intro", br [] [], link "/contents"]
 Other -> div [] [text "The page doesn't exist!"]
 in Document "Navigation Example App" [body]

CONCLUSION

APPENDIX: IMPORTS
import Browser exposing (application, UrlRequest(..), Document)
import Browser.Navigation exposing (Key, load, pushUrl)
import Html exposing (button, div, text, a, Html, br)
import Html.Attributes exposing (href)
import Html.Events exposing (onClick)
import String exposing (contains)
import Url exposing (Url, toString)

Revision #1
Created 11 March 2022 16:46:52 by gasick
Updated 11 March 2022 17:11:16 by gasick

