
Если вы видите что-то необычное, просто сообщите мне.

Haskell has a number of interesting libraries for frontend web development. Yesod and Snap come
to mind. Another option is Reflex FRP which uses GHCJS under the hood.

Each of these has their own strengths and weaknesses. But there are other options as well if we
want to write frontend web code while keeping a functional style. This series is all about the Elm
language!

I love Elm for a few reasons. Elm builds on my strong belief that we can take the principles of
functional programming and put them to practical use. The language is no-nonsense and the
documentation is quite good. Elm has a few syntactic quirks. It also lacks a few key Haskell
features. And yet, we can still do a lot with it.

In this first part, we'll look at basic installation, and usage, as well as some differences from
Haskell. If you're already a little familiar with Elm, you can move onto part 2, where we compose a
simple Todo list application in Elm. This will give us a feel for how we architect our Elm
applications. We'll wrap up by exploring how to add more effects to our app, and how to integrate
Elm types with Haskell.

Frontend is, of course, only part of the story. To learn more about using Haskell for backend web,
check out our Haskell Web Series! You can also download our Production Checklist for more ideas!

Also, be sure to check out our Github repository to see some of this example Elm code! This part's
code is mostly under the ElmProject folder.

As with any language, there will be some setup involved in getting Elm onto our machine for the
first time. For Windows and Mac, you can run the installer program provided here. There are

Elm Part 1: Language Basics

BASIC SETUP

separate instructions for Linux, but they're straightforward enough. You fetch the binary, tar it, and
move to your bin.

Once we have the elm executable installed, we can get going. When you've used enough package
management programs, the process gets easier to understand. The elm command has a few
fundamental things in common with stack and npm.

First, we can run elm init to create a new project. This will make a src folder for us as well as an
elm.json file. This JSON file is comparable to a .cabal file or package.json for Node.js. It's where
we'll specify all our different package dependencies. The default version of this will provide most of
your basic web packages. Then we'll make our .elm source files in /src.

RUNNING A BASIC PAGE Elm development looks different from most normal Javascript systems I've
worked with. While we're writing our code, we don't need to specify a specific entry point to our
application. Every file we make is a potential web page we can view. So here's how we can start off
with the simplest possible application:

Elm uses a model/view/controller system. We define our program in the main function. Our
Program type has three parameters. The first relates to flags we can pass to our program. We'll
ignore those for now. The second is the model type for our program. We'll start with a simple
integer. Then the final type is a message. Our view will cause updates by sending messages of this
type. The sandbox function means our program is simple, and has no side effects. Aside from
passing an initial state, we also pass an update function and a view function.

import Browser
import HTML exposing (Html, div, text)

type Message = Message

main : Program () Int Message
main =
 Browser.sandbox { init = 0, update = update, view = view }

update : Message -> Int -> Int
update _ x = x

view : Int -> Html Message
view _ = div [] [text "Hello World!"]

The update function allows us to take a new message and change our model if necessary. Then the
view is a function that takes our model and determines the HTML components. You can read the
type of view as "an HTML component that sends messages of type Message.

We can run the elm-reactor command and point our browser at localhost:8000. This takes us to a
dashboard where we can examine any file we want. We'll only want to look at the ones with a main
function. Then we'll see our simple page with the div on the screen. (It strangely spins if we select
a pure library file).

As per the Elm tutorial we can make this more interesting by using the Int in our model. We'll
change our Message type so that it can either represent an Increment or a Decrement. Then our
update function will change the model based on the message.

As a last change, we'll add + and - buttons to our interface. These will allow us to send the
Increment and Decrement messages to our type.

Now we have an interface where we can press each button and the number on the screen will
change! That's our basic application!

type Message = Increment | Decrement

update : Message -> Int -> Int
update msg model = case msg of
 Increment -> model + 1
 Decrement -> model - 1

view : Int -> Html Message
view model = div [] [String.fromInt model]

view model = div []
 [button [onClick Decrement] [text "-"]
 , div [] [text (String.fromInt model)]
 , button [onClick Increment] [text "+"]
]

THE MAKE COMMAND

The elm reactor command builds up a dummy interface for us to use and examine our pages. But
our ultimate goal is to make it so we can generate HTML and Javascript from our elm code. We
would then export these assets so our back-end could serve them as resources. We can do this
with the elm make command. Here's a sample:

We'll want to use scripting to pull all these elements together and dump them in an assets folder.
We'll get some experience with this in a couple weeks when we put together a full Elm + Haskell
project.

There are a few syntactic gotchas when comparing Elm to Haskell. We won't cover them all, but
here are the basics.

We can already see that import and module syntax is a little different. We use the exposing
keyword in an import definition to pick out specific expressions we want from that module.

We can also see that Elm uses type where we would use data in Haskell. If we want a type
synonym, Elm offers the type alias combination:

elm make Main.elm --output=main.html

DIFFERENCES FROM
HASKELL

import HTML exposing (Html, div, text)

import Types exposing (Message(..))
When we define our own module, we will also use the exposing keyword in place of where in the module
definition:

module Types exposing
 (Message(..))

type Message = Increment | Decrement

As you can see from the type operators above, Elm reverses the : operator and ::. A single colon
refers to a type signature. Double colons refer to list appending:

Elm is also missing some of the nicer syntax elements of Haskell. For instance, Elm lacks pattern
matching on functions and guards. Elm also does not have where clauses. Only case and let
statements exist. And instead of the . operator for function composition, you would use <<. data-
preserve-html-node="true" Here are a few examples of these points:

As a last note in this section, Elm is strictly evaluated. Elm compiles to Javascript so it can run in
browsers. And it's much easier to generate sensible Javascript with a strict language.

Another key difference with Elm is how record syntax works. It Elm, a "record" is a specific type.
These simulation Javascript objects. In this example, we define a type synonym for a record. While
we don't have pattern matching in general, we can use pattern matching on records:

type alias Count = Int

myNumber : Int
myNumber = 5

myList : [Int]
myList = 5 :: [2, 3]

isBigNumber : Int -> Bool
isBigNumber x = let forComparison = 5 in x > forComparison

findSmallNumbers : List Int -> List Int
findSmallNumbers numbers = List.filter (not << isBigNumber) numbers

ELM RECORDS

type alias Point2D =
 { x: Float
 , y: Float
 }

To make our code feel more like Javascript, we can use the . operator to access records in different
ways. We can either use the Javascript like syntax, or use the period and our field name as a
normal function.

We can also update particular fields of records with ease. This approach scales well to many fields:

The more controversial differences between Haskell and Elm lie with these two concepts. Elm does
not have typeclasses. For a Haskell veteran such as myself, this is a big restriction. Because of this,
Elm also lacks do syntax. Remember that do syntax relies upon the idea that the Monad typeclass
exists.

There is a reason for these omissions though. The Elm creator wrote an interesting article about it.

His main point is that (unlike me), most Elm users are coming from Javascript rather than Haskell.
They tend not to have much background with functional programming and related concepts. So it's
not as big a priority for Elm to capture these constructs. So what alternatives are available?

Well when it comes to typeclasses, each type has to come up with its own definition for a function.
Let's take the simple example of map. In Haskell, we have the fmap function. It allows us to apply a

sumOfPoint : Point2D -> Float
sumOfPoint {x, y} = x + y

point1 : Point2D
point1 = {x = 5.0, y = 6.0}

p1x : Float
p1x = point1.x

p1y : Float
p1y = .y point1

newPoint : Point2D
newPoint = { point1 | y = 3.0 }

TYPECLASSES AND MONADS

function over a container, without knowing what the container is:

We can apply this same function whether we have a list or a dictionary. In Elm though, each library
has its own map function. So we have to qualify the usage of it:

Instead of monads, Elm uses a function called andThen. This acts a lot like Haskell's >>= operator.
We see this pattern more often in object oriented languages like Java. As an example from the
documentation, we can see how this works with Maybe.

So Elm doesn't give us quite as much functional power as we have in Haskell. That said, Elm is a
front-end language first. It expresses how to display our data and how we bring components
together. If we need complex functional elements, we can use Haskell and put that on the back-
end.

fmap :: (Functor f) => (a -> b) -> f a -> f b

import List
import Dict

double : List Int -> List Int
double l = List.map (* 2) l

doubleDict : Dict String Int -> Dict String Int
doubleDict d = Dict.map (* 2) d

toInt : String -> Maybe Int

toValidMonth : Int -> Maybe Int
toValidMonth month =
 if month >= 1 && month <= 12
 then Just month
 else Nothing

toMonth : String -> Maybe Int
toMonth rawString =
 toInt rawString `andThen` toValidMonth

You're now ready to move onto part 2 of this series! There, we'll expand our understanding of Elm
by writing a more complicated program. We'll write a simple Todo list application and see Elm's
architecture in action.

To hear more from Monday Morning Haskell, make sure to Subscribe to our newsletter! That will
also give you access to our awesome Resources page!

CONCLUSION

Revision #1
Created 11 March 2022 16:38:57 by gasick
Updated 11 March 2022 17:11:16 by gasick

