
Если вы видите что-то необычное, просто сообщите мне.

In part 1, we began our series on production Haskell techniques by learning about Persistent. We
created a schema that contained a single User type that we could store in a Postgresql database.
We examined a couple functions allowing us to make SQL queries about these users.

In this part, we'll see how we can expose this database to the outside world using an API. We'll
construct our API using the Servant library. If you've already experienced Servant for yourself, you
can move on to part 3, where you'll learn about caching and using Redis from Haskell.

Now, Servant involves some advanced type level constructs, so there's a lot to wrap your head
around. There are definitely simpler approaches to HTTP servers than what Servant uses. But I've
found that the power Servant gives us is well worth the effort. On the other hand, if you want some
simpler approaches, you can take a look at our Production Checklist. It'll give you ideas for some
other Web API libraries and a host of other tasks!

As a final note, make sure to look at the Github Repository! For this part, you'll mainly want to look
at the Basic Server module.

The first step in writing an API for our user database is to decide what the different endpoints are.
We can decide this independently of what language or library we'll use. For this article, our API will
have two different endpoints. The first will be a POST request to /users. This request will contain a
"user" definition in its body, and the result will be that we'll create a user in our database. Here's a
sample of what this might look like:

Building an API with Servant!

DEFINING OUR API

POST /users
{
 userName : "John Doe",

It will then return a response containing the database key of the user we created. This will allow
any clients to fetch the user again. The second endpoint will use the ID to fetch a user by their
database identifier. It will be a GET request to /users/:userid. So for instance, the last request might
have returned us something like 16. We could then do the following:

And our response would look like the request body from above.

So we've got our very simple API. How do we actually define this in Haskell, and more specifically
with Servant? Well, Servant does something pretty unique. In Servant we define our API by using a
type. Our type will include sub-types for each of the endpoints of our API. We combine the different
endpoints by using the (:<|>) operator. I'll sometimes refer to this as "E-plus", for "endpoint-plus".
This is a type operator, so remember we'll need the TypeOperators language extension. Here's the
blueprint of our API:

Now let's define what we mean by fetchEndpoint and createEndpoint. Endpoints combine different
combinators that describe different information about the endpoint. We link combinators together
with the (:>) operator, which I call "C-plus" (combinator plus). Here's what our final API looks like.
We'll go through what each combinator means in the next section:

 userEmail : "john@doe.com",
 userAge : 29,
 userOccupation: "Teacher"
}

GET /users/16

AN API AS A TYPE

type UsersAPI =
 fetchEndpoint
 :<|> createEndpoint

type UsersAPI =
 "users" :> Capture "userid" Int64 :> Get '[JSON] User
 :<|> "users" :> ReqBody '[JSON] User :> Post '[JSON] Int64

Both of these endpoints have three different combinators. Let's start by examining the fetch
endpoint. It starts off with a string combinator. This is a path component, allowing us to specify
what url extension the caller should use to hit the endpoint. We can use this combinator multiple
times to have a more complicated path for the endpoint. If we instead wanted this endpoint to be
at /api/users/:userid then we'd change it to:

The second combinator (Capture) allows us to get a value out of the URL itself. We give this value a
name and then we supply a type parameter. We won't have to do any path parsing or manipulation
ourselves. Servant will handle the tricky business of parsing the URL and passing us an Int64. If you
want to use your own custom class as a piece of HTTP data, that's not too difficult. You'll just have
to write an instance of the FromHttpApiData class. All the basic types like Int64 already have
instances.

The final combinator itself contains three important pieces of information for this endpoint. First, it
tells us that this is in fact a GET request. Second, it gives us the list of content-types that are
allowable in the response. This is a type level list of content formats. Each type in this list must
have different classes for serialization and deserialization of our data. We could have used a more
complicated list like '[JSON, PlainText, OctetStream]. But for the rest of this article, we'll just use
JSON. This means we'll use the ToJSON and FromJSON typeclasses for serialization.

The last piece of this combinator is the type our endpoint returns. So a successful request will give
the caller back a response that contains a User in JSON format. Notice this isn't a Maybe User. If the
ID is not in our database, we'll return a 401 error to indicate failure, rather than returning Nothing.

Our second endpoint has many similarities. It uses the same string path component. Then its final
combinator is the same except that it indicates it is a POST request instead of a GET request. The
second combinator then tells us what we can expect the request body to look like. In this case, the
request body should contain a JSON representation of a User. It also requires a list of acceptable
content types, and then the type we want, like the Get and Post combinators.

COMBINATORS

"api" :> "users" :> Capture "userid" Int64 :> Get '[JSON] User

That completes the "definition" of our API. We'll need to add ToJSON and FromJSON instances of our
User type in order for this to function. You can take a look at those on Github, and check out this
article for more details on creating those instances!

Now that we've defined the type of our API, we need to write handler functions for each endpoint.
This is where Servant's awesomeness kicks in. We can map each endpoint up to a function that has
a particular type based on the combinators in the endpoint. So, first let's remember our endpoint
for fetching a user:

The string path component doesn't add any arguments to our function. The Capture component will
result in a parameter of type Int64 that we'll need in our function. Then the return type of our
function should be User. This almost completely defines the type signature of our handler. We'll
note though that it needs to be in the Handler monad. So here's what it'll look like:

We can also look at the type for our create endpoint:

The parameter for a ReqBody parameter is just the type argument. So it will resolve this endpoint
into the handler monad like so:

Now, we'll need to be able to access our Postgres database through both of these handlers. So
they'll each get an extra parameter referring to the connection string (recall the PGInfo type alias).
We'll pass that from our code so that by the time Servant is resolving the types, the parameter is
accounted for:

WRITING HANDLERS

"users" :> Capture "userid" Int64 :> Get '[JSON] User

fetchUsersHandler :: Int64 -> Handler User
...

"users" :> ReqBody '[JSON] User :> Post '[JSON] Int64

createUserHandler :: User -> Handler Int64
...

Before we go any further, we should discuss the Handler monad. This is a wrapper around the
monad ExceptT ServantErr IO. In other words, each of these requests might fail. To make it fail, we
can throw errors of type ServantErr. Then of course we can also call IO functions, because these
are network operations.

Before we implement these functions, let's first write a couple simple helpers. These will use the
runAction function from the last part to run database actions:

For completeness (and use later in testing), we'll also add a simple delete function. We need the
signature on the where clause for type inference:

Now we'll call these two functions from our Servant handlers. This will completely cover the case of
the create endpoint. But we'll need a little bit more logic for the fetch endpoint. Since our functions
are in the IO monad, we have to lift them up to Handler.

fetchUsersHandler :: PGInfo -> Int64 -> Handler User
createUserHandler :: PGInfo -> User -> Handler Int64

THE HANDLER MONAD

fetchUserPG :: PGInfo -> Int64 -> IO (Maybe User)
fetchUserPG connString uid = runAction connString (get (toSqlKey uid))

createUserPG :: PGInfo -> User -> IO Int64
createUserPG connString user = fromSqlKey <$> runAction connString (insert user)

deleteUserPG :: ConnectionString -> Int64 -> IO ()
deleteUserPG connString uid = runAction connString (delete userKey)
 where
 userKey :: Key User
 userKey = toSqlKey uid

fetchUsersHandler :: ConnectionString -> Int64 -> Handler User
fetchUserHandler connString uid = do
 maybeUser <- liftIO $ fetchUserPG connString uid
 ...

To complete our fetch handler, we need to account for a non-existent user. Instead of making the
type of the whole endpoint a Maybe, we'll throw a ServantErr in this case. We can use one of the
built-in Servant error functions, which correspond to normal error codes. Then we can update the
body. In this case, we'll throw a 401 error. Here's how we do that:

And that's it! We're done with our handler functions!

Our next step is to create an object of type Server over our API. This is actually remarkably simple.
When we defined the original type, we combined the endpoints with the (:<|>) operator. To make
our Server, we do the same thing but with the handler functions:

And Servant does all the work of ensuring that the type of each endpoint matches up with the type
of the handler! Suppose we changed the type of our fetchUsersHandler so that it took a Key User

createUserHandler :: ConnectionString -> User -> Handler Int64
createuserHandler connString user = liftIO $ createUserPG connString user

fetchUsersHandler :: ConnectionString -> Int64 -> Handler User
fetchUserHandler connString uid = do
 maybeUser <- lift $ fetchUserPG connString uid
 case maybeUser of
 Just user -> return user
 Nothing -> Handler $ (throwE $ err401 { errBody = "Could not find user with ID: " ++ (show uid)})

createUserHandler :: ConnectionString -> User -> Handler Int64
createuserHandler connString user = lift $ createUserPG connString user

COMBINING IT ALL INTO A
SERVER

usersServer :: ConnectionString -> Server UsersAPI
usersServer pgInfo =
 (fetchUsersHandler pgInfo) :<|>
 (createUserHandler pgInfo)

instead of an Int64. We'd get a compile error:

There's now a mismatch between our API definition and our handler definition. So Servant knows to
throw an error! The one issue is that the error messages can be rather difficult to interpret
sometimes. This is especially the case when your API becomes very large! The "Actual type"
section of the above error will become massive! So always be careful when changing your
endpoints! Frequent compilation is your friend!

The final piece of the puzzle is to actually build an Application object out of our server. The first
step of this process is to create a Proxy for our API. Remember that our API is a type, and not a
term. But a Proxy allows us to represent this type at the term level. The concept is a little
complicated, but the code is not!

Now we can make our runnable Application like so (assuming we have a Postgres connection):

fetchUsersHandler :: ConnectionString -> Key User -> Handler User
...

-- Compile Error!
• Couldn't match type ‘Key User' with ‘Int64'
 Expected type: Server UsersAPI
 Actual type: (Key User -> Handler User)
 :<|> (User -> Handler Int64)

BUILDING THE APPLICATION

import Data.Proxy

...

usersAPI :: Proxy UsersAPI
usersAPI = Proxy :: Proxy UsersAPI

serve usersAPI (usersServer connString)

We'll run this server from port 8000 by using the run function, again from Network.Wai. (See Github
for a full list of imports). We'll fetch our connection string, and then we're good to go!

The Servant library offers some truly awesome possibilities. We're able to define a web API at the
type level. We can then define handler functions using the parameters the endpoints expect.
Servant handles all the work of marshalling back and forth between the HTTP request and the
native Haskell types. It also ensures a match between the endpoints and the handler function
types!

Now you're ready for part 3 of our Real World Haskell series! You'll learn how we can modify our
API to be faster by employing a Redis cache!

This part of the series gave a brief overview on Servant. But if you want a more in-depth
introduction, you should check out my talk from Bayhac from April 2017! That talk was more
exhaustive about the different combinators you can use in your APIs. It also showed authentication
techniques, client functions and documentation. You can also check out the slides and code for that
presentation!

On the other hand, Servant is also quite involved. If you want some ideas for a simpler solution,
check out our Production Checklist! It'll give a couple other suggestions for Web API libraries and so
much more!

runServer :: IO ()
runServer = run 8000 (serve usersAPI (usersServer localConnString))

CONCLUSION

Revision #1
Created 11 March 2022 06:16:16 by gasick
Updated 11 March 2022 17:11:17 by gasick

