
Если вы видите что-то необычное, просто сообщите мне.

In part 2 of this series we looked at the Regex-based Applicative Parsing library. We took a lot of
smaller combinators and put them together to parse our Gherkin syntax (check out part 1 for a
quick refresher on that).

This week, we'll look at a new library: Attoparsec. Instead of trying to do everything with a purely
applicative structure, this library uses a monadic approach. This approach is much more common.
It results in syntax that is simpler to read and understand. It will also make it easier for us to add
certain features.

To follow along with the code for this article, take a look at the AttoParser module on Github! For
some more excellent ideas about useful libraries, download our Production Checklist! It includes
material on libraries for everything from data structures to machine learning!

Finally, if you already know about Attoparsec, feel free to move onto part 4 and learn about
Megaparsec!

In applicative parsing, all our parsers had the type RE Char. This type belonged to the Applicative
typeclass but was not a Monad. For Attoparsec, we'll instead be using the Parser type, a full
monad. So in general we'll be writing parsers with the following types:

Attoparsec

THE PARSER TYPE

featureParser :: Parser Feature
scenarioParser :: Parser Scenario
statementParser :: Parser Statement
exampleTableParser :: Parser ExampleTable
valueParser :: Parser Value

The first thing we should realize though is that our parser is still an Applicative! So not everything
needs to change! We can still make use of operators like *> and <|>. In fact, we can leave our
value parsing code almost exactly the same! For instance, the valueParser, nullParser, and
boolParser expressions can remain the same:

If we wanted, we could make these more "monadic" without changing their structure. For instance,
we can use return instead of pure (since they are identical). We can also use >> instead of *> to
perform monadic actions while discarding a result. Our value parser for numbers changes a bit, but
it gets simpler! The authors of Attoparsec provide a convenient parser for reading scientific
numbers:

PARSING VALUES

valueParser :: Parser Value
valueParser =
 nullParser <|>
 boolParser <|>
 numberParser <|>
 stringParser

nullParser :: Parser Value
nullParser =
 (string "null" <|>
 string "NULL" <|>
 string "Null") *> pure ValueNull

boolParser :: Parser Value
boolParser = (trueParser *> pure (ValueBool True)) <|> (falseParser *> pure (ValueBool False))
 where
 trueParser = string "True" <|> string "true" <|> string "TRUE"
 falseParser = string "False" <|> string "false" <|> string "FALSE"

numberParser :: Parser Value
numberParser = ValueNumber <$> scientific

Then for string values, we'll use the takeTill combinator to read all the characters until a vertical
bar or newline. Then we'll apply a few text functions to remove the whitespace and get it back to a
String. (The Parser monad we're using parses things as Text rather than String).

As we parse the example table, we'll switch to a more monadic approach by using do-syntax. First,
we establish a cellParser that will read a value within a cell.

Each line in our statement refers to a step of the parsing process. So first we skip all the leading
whitespace. Then we parse our value. Then we skip the remaining space, and parse the final
vertical bar to end the cell. Then we'll return the value we parsed.

It's a lot easier to keep track of what's going on here compared to applicative syntax. It's not hard
to see which parts of the input we discard and which we use. If we don't assign the value with <-
within do-syntax, we discard the value. If we retrieve it, we'll use it. To complete the
exampleLineParser, we parse the initial bar, get many values, close out the line, and then return
them:

stringParser :: Parser Value
stringParser = (ValueString . unpack . strip) <$>
 takeTill (\c -> c == '|' || c == '\n')

PARSING EXAMPLES

cellParser = do
 skipWhile nonNewlineSpace
 val <- valueParser
 skipWhile (not . barOrNewline)
 char '|'
 return val

exampleLineParser :: Parser [Value]
exampleLineParser = do
 char '|'
 cells <- many cellParser
 char '\n'
 return cells

Reading the keys for the table is almost identical. All that changes is that our cellParser uses many
letter instead of valueParser. So now we can put these pieces together for our exampleTableParser:

We read the signal string "Examples:", followed by consuming the line. Then we get our keys and
values, and build the table with them. Again, this is much simpler than mapping a function like
buildExampleTable like in applicative syntax.

The Statement parser is another area where we can improve the clarity of our code. Once again,
we'll define two helper parsers. These will fetch the portions outside brackets and then inside
brackets, respectively:

Now when we put these together, we can more clearly see the steps of the process outlined in do-
syntax. First we parse the “signal” word, then a space. Then we get the “pairs” of non-bracketed
and bracketed portions. Finally, we'll get one last non-bracketed part:

 where
 cellParser = ...

exampleTableParser :: Parser ExampleTable
exampleTableParser = do
 string "Examples:"
 consumeLine
 keys <- exampleColumnTitleLineParser
 valueLists <- many exampleLineParser
 return $ ExampleTable keys (map (zip keys) valueLists)

STATEMENTS

nonBrackets :: Parser String
nonBrackets = many (satisfy (\c -> c /= '\n' && c /= '<'))

insideBrackets :: Parser String
insideBrackets = do
 char '<'
 key <- many letter
 char '>'
 return key

Now we can define our helper function buildStatement and call it on its own line in do-syntax. Then
we'll return the resulting Statement. This is much easier to read than tracking which functions we
map over which sections of the parser:

As with applicative parsing, it's now straightforward for us to finish everything off. To parse a
scenario, we read the keyword, consume the line to read the title, and read the statements and
examples:

parseStatementLine :: Text -> Parser Statement
parseStatementLine signal = do
 string signal
 char ' '
 pairs <- many ((,) <$> nonBrackets <*> insideBrackets)
 finalString <- nonBrackets
 ...

parseStatementLine :: Text -> Parser Statement
parseStatementLine signal = do
 string signal
 char ' '
 pairs <- many ((,) <$> nonBrackets <*> insideBrackets)
 finalString <- nonBrackets
 let (fullString, keys) = buildStatement pairs finalString
 return $ Statement fullString keys
 where
 buildStatement
 :: [(String, String)] -> String -> (String, [String])
 buildStatement [] last = (last, [])
 buildStatement ((str, key) : rest) rem =
 let (str', keys) = buildStatement rest rem
 in (str <> "<" <> key <> ">" <> str', key : keys)

SCENARIOS AND FEATURES

scenarioParser :: Parser Scenario
scenarioParser = do
 string "Scenario: "

Again, we provide an empty ExampleTable as an alternative if there are no examples. The parser
for Background looks very similar. The only difference is we ignore the result of the line and instead
use Background as the title string.

Finally, we'll put all this together as a feature. We read the title, get the background if it exists, and
read our scenarios:

One extra feature we'll add now is that we can more easily parse the “description” of a feature. We
omitted them in applicative parsing, as it's a real pain to implement. It becomes much simpler
when using a monadic approach. The first step we have to take though is to make one parser for all
the main elements of our feature. This approach looks like this:

 title <- consumeLine
 statements <- many (parseStatement <* char '\n')
 examples <- (exampleTableParser <|> return (ExampleTable [] []))
 return $ Scenario title statements examples

backgroundParser :: Parser Scenario
backgroundParser = do
 string "Background:"
 consumeLine
 statements <- many (parseStatement <* char '\n')
 examples <- (exampleTableParser <|> return (ExampleTable [] []))
 return $ Scenario "Background" statements examples

featureParser :: Parser Feature
featureParser = do
 string "Feature: "
 title <- consumeLine
 maybeBackground <- optional backgroundParser
 scenarios <- many scenarioParser
 return $ Feature title maybeBackground scenarios

FEATURE DESCRIPTION

Now we'll use a recursive function that reads one line of the description at a time and adds to a
growing list. The trick is that we'll use the choice combinator offered by Attoparsec.

We'll create two parsers. The first assumes there are no further lines of description. It attempts to
parse the background and scenario list. The second reads a line of description, adds it to our
growing list, and recurses:

So we'll first try to run this noDescriptionLineParser. It will try to read the background and then the
scenarios as we've always done. If it succeeds, we know we're done. The argument we passed is
the full description:

Now if this parser fails, we know that it means the next line is actually part of the description. So
we'll write a parser to consume a full line, and then recurse:

featureParser :: Parser Feature
featureParser = do
 string "Feature: "
 title <- consumeLine
 (description, maybeBackground, scenarios) <- parseRestOfFeature
 return $ Feature title description maybeBackground scenarios

parseRestOfFeature :: Parser ([String], Maybe Scenario, [Scenario])
parseRestOfFeature = ...

parseRestOfFeature :: Parser ([String], Maybe Scenario, [Scenario])
parseRestOfFeature = parseRestOfFeatureTail []
 where
 parseRestOfFeatureTail prevDesc = do
 (fullDesc, maybeBG, scenarios) <- choice [noDescriptionLine prevDesc, descriptionLine prevDesc]
 return (fullDesc, maybeBG, scenarios)

where
 noDescriptionLine prevDesc = do
 maybeBackground <- optional backgroundParser
 scenarios <- some scenarioParser
 return (prevDesc, maybeBackground, scenarios)

descriptionLine prevDesc = do
 nextLine <- consumeLine

And now we're done! We can parse descriptions!

That wraps up our exploration of Attoparsec. Now you can move on to the fourth and final part of
this series where we'll learn about Megaparsec. We'll find that it's syntactically very similar to
Attoparsec with a few small exceptions. We'll see how we can use some of the added power of
monadic parsing to enrich our syntax.

To learn more about cool Haskell libraries, be sure to check out our Production Checklist! It'll tell
you a little bit about libraries in all kinds of areas like databases and web APIs.

If you've never written Haskell at all, download our Beginner's Checklist! It'll give you all the
resources you need to get started on your Haskell journey!

 parseRestOfFeatureTail (prevDesc ++ [nextLine])

CONCLUSION

Revision #1
Created 11 March 2022 16:17:03 by gasick
Updated 11 March 2022 17:11:16 by gasick

