
Если вы видите что-то необычное, просто сообщите мне.

В Haskell, мы бы предпочли, чтобы показателем было не только то что наш код собирается,
но и то что он правильно работает. В Haskell это проще чем в других языках. Но конечно,
всегда есть что по делать. Важная часть любого языка - написание тестов. В этой части
рассмотрим несколько распространенных тестовых библиотек. А так же обсудим базовые
парадигмы вокруг интеграционных тестов в процессе разработки.

TDD и базовые библиотеки
Profiling and Benchmarking
Improving Performance with Data Structures

Testing in Haskell



Сколько раз вы встречали зависимость от ошибок в вашем коде? Это может быть очень
обидно для разработчика програмного обеспечеия. Вы отправили код в уверенности, что он
отлично работает. Но теперь оказалось, что сломано, что-то другое. Даже хуже, вы
обнаружили, что несмотря на то что ваш код правилно работает, он делает это очень
медленно. Ваша система начинает ломаться при увеличении нагрузки, оставляя плохое
впечаление пользователям.

Лучший способ избежать этих проблем это иметь автоматический код, который проверят
состояние и производительность ваших программ. В этой части над тестированием в Haskell,
мы посмотрим, что библиотеки могут использовать для тестирования и профилирования
нашего кода. Первая статья пройдет по общей идее стоящей за TDD, и некоторыми
базовыми библиотеками The best way to avoid these issues is to have automated code that
verifies test conditions and the performance of your program. In this series on Testing with Haskell,
we'll see what libraries we can use to test and profile our code. This first part goes over the general
ideas behind test driven development (TDD) and some of the basic libraries we can use to make it
work in Haskell. We'll also quickly examine why Haskell is a good fit for TDD.

If you're already familiar with libraries like HUnit and HSpec, you can move onto part 2 of this
series, where we discuss how to identify performance issues using profiling.

To use testing properly, you'll need to have some understanding of how we organize projects in
Haskell. I recommend you learn how to use Stack to organize your Haskell code. Learn how by
taking our free Stack mini-course!

You can follow along with this code on the companion Github Repository for this series! In a few
spots we'll reference specific files you can look at, so keep your eyes peeled!

TDD и базовые библиотеки



Testing works best when we are testing specific functions. We pass input, we get output, and we
expect the output to match our expectations. In Haskell, this is a approach is a natural fit.
Functions are first class citizens. And our programs are largely defined by the composition of
functions. Thus our code is by default broken down into our testable units.

Compare this to an object oriented language, like Java. We can test the static methods of a class
easily enough. These often aren't so different from pure functions. But now consider calling a
method on an object, especially a void method. Since the method has no return value, its effects
are all internal. And often, we will have no way of checking the internal effects, since the fields
could be private.

We'll also likely want to try checking certain edge cases. But this might involve constructing objects
with arbitrary state. Again, we'll run into difficulties with private fields.

In Haskell, all our functions have return values, rather than depending on effects. This makes it
easy for us to check their true results. Pure functions also give us another big win. Our functions
generally have no side effects and do not depend on global state. Thus we don't have to worry
about as many pathological cases that could impact our system.

So now that we know why we're somewhat confident about our testing, let's explore the process of
writing tests. The first step is to define the public API for a particular module. To do this, we define
a particular function we're going to expose, and the types that it will take as input as output. Then
we can stub it out as undefined, as suggested in this article on Compile Driven Learning. This
makes it so that our code that calls it will still compile.

FUNCTIONAL TESTING
ADVANTAGES

TEST DRIVEN DEVELOPMENT



Now the great temptation for much all developers is to jump in and write the function. After all, it's
a new function, and you should be excited about it!

But you'll be much better off in the long run if you first take the time to define your test cases. You
should first define specific sets of inputs to your function. Then you should match those with the
expected output of those parameters. We'll go over the details of this in the next section. Then
you'll write your tests in the test suite, and you should be able to compile and run the tests. Since
your function is still undefined, they'll all fail. But now you can implement the function
incrementally.

Your next goal is to get the function to run to completion. Whenever you find a value you aren't
sure how to fill in, try to come up with a base value. Once it runs to completion, the tests will tell
you about incorrect values, instead of errors. Then you can gradually get more and more things
right. Perhaps some of your tests will check out, but you missed a particular corner case. The tests
will let you know about it.

Suppose to start out, we're writing a function that will take three inputs. It should multiply the first
two, and subtract the third. We'll start out by making it undefined. You can see this function in this
module in the "library" of our Haskell project:

Now let's write a test suite that will evaluate this function! To do this we'll go into the .cabal file for
our project and add a test-suite section that looks like this:

WRITING OUR TEST SUITE

simpleMathFunction :: Int -> Int -> Int -> Int
simpleMathFunction a b c = undefined

test-suite unit-test
  type: exitcode-stdio-1.0
  main-is: UnitTest.hs
  other-modules:
      Paths_Testing
  hs-source-dirs:
      test



A test suite is like an executable. So it has a "Main" module specified by the main-is file, and you
should specify the directory it lives in. Many of the other properties are pretty standardized. But
the build-depends section will change depending on the test library you decide to use. In our case,
we're going to test our code using the HUnit library combined with the Tasty framework.

We start out our test suite the same way we start out an executable, by creating a main function of
type IO ():

Most testing libraries have some kind of a "default" main function you can use that will provide
most of their functionality. In the case of HUnit, we'll use defaultMain and then provide a TestTree
expression:

  ghc-options: -threaded -rtsopts -with-rtsopts=-N
  build-depends:
      Testing
    , base >=4.7 && <5
    , tasty
    , tasty-hunit
  default-language: Haskell2010

USING HUNIT

module Main where

import Test.Tasty
import Test.Tasty.HUnit

main :: IO ()
main = ...

main :: IO ()
main = ...

simpleMathTests :: TestTree
simpleMathTests = ...



We construct a "tree" in two ways. The first is to use an individual case with testCase. This function
takes name to identify the case, and then a "predicate assertion".

Ultimately, an assertion is just an IO action. But there are some special combinators we can use to
make statements about the function of our code. The most common of these in HUnit are (@?=)
and (@=?). These take two expressions and assert that they are equal. One of these should be the
"actual" value we get from running our code, and the other should be the "expected" value. Here's
our complete test case:

The @=? operator works the same way, except you should reverse the "actual" and "expected"
sides.

The other way to build a TestTree is to use testGroup. This simply takes a name for this layer of the
tree, and then a list of TestTree elements. We can then use testCase for those specific elements.

If you go to this file in the repository, you can add additional test cases to this list and run them!

Our basic test suite is now complete! We can run this suite from our project directory by using the
following command:

simpleMathTests :: TestTree
simpleMathTests = testCase "Small Numbers" $
  ... -- (predicate assertion)

simpleMathTests :: TestTree
simpleMathTests = testCase "Small Numbers" $
  simpleMathFunction 3 4 5 @?= 7

simpleMathTests :: TestTree
simpleMathTests = testGroup "Simple Math Tests"
  [ testCase "Small Numbers" $
      simpleMathFunction 3 4 5 @?= 7
  ]

RUNNING OUR TESTS



We can also use stack test to run all the different test suites we have. With our undefined function,
we'll get this output:

So as expected, our test cases fail, so we know how we can go about improving our code. So let's
implement this function:

And now everything succeeds!

As you work on bigger projects, you'll find you aren't just interacting with other engineers on your
team. There are often less technical stakeholders like project managers and QA testers. These folks
are less concerned with the internal details of the code, but are focused more on its broader
behavior. In these cases, you may want to adopt "behavior driven development." This is like test
driven development, but with a different flavor. In this framework, you describe your code and its
expected effects via a set of behaviors. Ideally, these are abstract enough that less technical
people can understand them.

stack build Testing:test:unit-test

Simple Math Tests
  Small Numbers:  FAIL
    Exception: Prelude.undefined

simpleMathFunction :: Int -> Int -> Int -> Int
simpleMathFunction a b c = a * b - c

Simple Math Tests
  Small Numbers:  OK

All 1 test passed (0.00s)

BEHAVIOR DRIVEN
DEVELOPMENT



You as the engineer then want to be able to translate these behaviors into code. Luckily, Haskell is
an immensely expressive language. You can often define your functions in such a way that they
can almost read like English.

In Haskell, you can implement behavior driven development with the Hspec library. With this
library, you describe your functions in a particularly expressive way. All your test specifications will
belong to a Spec monad.

In this monad, you can use composable functions to describe the test cases. You will generally
begin a description of a test case with the "describe" function. This takes a string describing the
general overview of the test case.

You can then modify it by adding a different "context" for each individual case. The context
function also takes a string. However, the idiomatic usage of context is that your string should
begin with the words "when" or "with".

Now you'll describe each the actual test cases. You'll use the function "it", and then a comparison.
The combinators in the Hspec framework are functions with descriptive names like shouldBe. So
your case will start with a sentence-like description and context of the case. The the case finishes
"it should have a certain result": x "should be" y. Here's what it looks like in practice:

HSPEC

simpleMathSpec :: Spec
simpleMathSpec = describe "Tests of our simple math function" $ do
  ...

simpleMathSpec :: Spec
simpleMathSpec = describe "Tests of our simple math function" $ do
  context "when the numbers are small" $
    ...
  context "when the numbers are big" $
    ...

simpleMathSpec :: Spec
simpleMathSpec = describe "Tests of our simple math function" $ do



It's also possible to omit the context completely:

Now to incorporate this into your main function, all you need to do is use hspec together with your
Spec!

Note that Spec is a monad, so multiple tests are combined with "do" syntax. You can explore this
library more and try writing your own test cases in this file in the repository!

At the end, you'll get neatly formatted output with descriptions of the different test cases. By
writing expressive function names and adding your own combinators, you can make your test code
even more self documenting.

  context "when the numbers are small" $
    it "Should match the our expected value" $
      simpleMathFunction 3 4 5 `shouldBe` 7
  context "when the numbers are big" $
    it "Should match the our expected value" $
      simpleMathFunction 22 12 64 `shouldBe` 200

simpleMathSpec :: Spec
simpleMathSpec = describe "Tests of our simple math function" $ do
  it "Should match the our expected value" $
    simpleMathFunction 3 4 5 `shouldBe` 7
  it "Should match the our expected value" $
    simpleMathFunction 22 12 64 `shouldBe` 200

main :: IO ()
main = hspec simpleMathSpec

Tests of our simple math function
  when the numbers are small
    Should match the our expected value
  when the numbers are big
    Should match the our expected value

Finished in 0.0002 seconds
2 examples, 0 failures



This concludes our introduction to testing in Haskell. We went through a brief description of the
general practices of test-driven development. We saw why it's even more powerful in a functional,
typed language like Haskell. We went over some of the basic testing mechanisms you'll find in the
HUnit library. We then described the process of "behavior driven development", and how it differs
from normal TDD. We concluded by showing how the HSpec library brings BDD to life in Haskell.

But testing correctness is only half the story! We also need to be sure that our code is performant
enough. In part 2 of this series, we'll discuss how we can use the Criterion library to identify
performance issues in our system.

If you want to see TDD in action and learn about a cool functional paradigm along the way, you
should check out our Recursion Workbook. It has 10 practice problems complete with tests, so you
can walk through the process of incrementally improving your code and finally seeing the tests
pass!

If you want to learn the basics of writing your own test suites, you need to understand how Haskell
code is organized! Take our quick and free Stack mini-course to learn how to use the Stack tool for
this!

CONCLUSION



I've said it before, but I'll say it again. As much as we'd like to think it's the case, our Haskell code
doesn't work just because it compiles. In part 1 of this testing series, we saw how to construct basic
test suites to make sure our code functions properly. But even if it passes our test suites, this
doesn't mean it works as well as it could either. Sometimes we'll realize that the code we wrote
isn't quite performant enough, so we'll have to make improvements.

But improving our code can sometimes feel like taking shots in the dark. You'll spend a great deal
of time tweaking a certain piece. Then you'll find you haven't actually made much of a dent in the
total run time of the application. Certain operations generally take longer, like database calls,
network operations, and IO. So you can often have a decent idea of where to start. But it always
helps to be sure. This is where benchmarking and profiling come in. We're going to take a specific
problem and learn how we can use some Haskell tools to zero in on the problem point. In part 3 of
this series, we'll see how we can fix some of the problems that we identify with some advanced
data structures!

As a note, the tools we'll use require you to be organizing your code using Stack or Cabal. If you've
never used either of these before, you should check out our Stack Mini Course! It'll teach you the
basics of creating a project with Stack. You'll also learn the primary commands to use with Stack.
It's free, so check it out!

You can also follow along with this code by heading to the Github repository for this series! The
bulk of the code for this part lives in the Fences module and the Benchmark file that we'll design.

Our overarching problem for this article will be the "largest rectangle" problem. You can actually
try to solve this problem yourself on Hackerrank under the name "John and Fences". Imagine we
have a series of vertical bars with varying heights placed next to each other. We want to find the
area of the largest rectangle that we can draw over these bars that doesn't include any empty
space. Here's a visualization of one such problem and solution:

Profiling and Benchmarking

THE PROBLEM



In this example, we have posts with heights [2,5,7,4,1,8]. The largest rectangle we can form has an

area of 12, as we see with the highlighted squares. 

This problem is pretty neat and clean to solve with Haskell, as it lends itself to a recursive solution.
First let's define a couple newtypes to illustrate our concepts for this problem. We'll use a compiler
extension to derive the Num typeclass on our index type, as this will be useful later.

Next, we'll define our primary function. It will take our FenceValues, a list of integers, and return
our solution.

Fence Problem.png

{-# LANGUAGE GeneralizedNewtypeDeriving #-}
...
newtype FenceValues = FenceValues { unFenceValues :: [Int] }
newtype FenceIndex = FenceIndex { unFenceIndex :: Int }
  deriving (Eq, Num, Ord)
-- Left Index is inclusive, right index is non-inclusive 
newtype FenceInterval = FenceInterval { unFenceInterval :: (FenceIndex, FenceIndex) }
newtype FenceSolution = FenceSolution { unFenceSolution :: Int }
  deriving (Eq, Show, Ord)

largestRectangle :: FenceValues -> FenceSolution
largestRectangle values = ...

https://notepad.gasick.ru/uploads/images/gallery/2022-03/image-1646977948017.png


It in turn will call our recursive helper function. This function will calculate the largest rectangle
over a specific interval. We can solve it recursively by using smaller and smaller intervals. We'll
start by calling it on the interval of the whole list.

Now, to break this into recursive cases, we need some more information first. What we need is the
index i of the minimum height in this interval. One option is that we could make a rectangle
spanning the whole interval with this height.

Any other "largest rectangle" won't use this particular index. So we can then divide our problem
into two more cases. In the first, we'll find the largest rectangle on the interval to the left. In the
second, we'll look to the right.

As your might realize, these two cases simply involve making recursive calls! Then we can easily
compare their results. The only thing we need to add is a base case. Here are all these cases
represented in code:

largestRectangle :: FenceValues -> FenceSolution
largestRectangle values = largestRectangleAtIndices values
  (FenceInterval (FenceIndex 0, FenceIndex (length (unFenceValues values))))

largestRectangleAtIndices :: FenceValues -> FenceInterval -> FenceSolution
largestRectangleAtIndices = ...

largestRectangleAtIndices :: FenceValues -> FenceInterval -> FenceSolution
largestRectangleAtIndices
  values
  interval@(FenceInterval (leftIndex, rightIndex)) = 
    -- Base Case: Checks if left + 1 >= right
    if isBaseInterval interval
      then FenceSolution (valueAtIndex values leftIndex)
      -- Compare three cases
      else max (max middleCase leftCase) rightCase
      where
      -- Find the minimum height and its index
      (minIndex, minValue) = minimumHeightIndexValue values interval
      -- Case 1: Use the minimum index
      middleCase = FenceSolution $ (intervalSize interval) * minValue
      -- Recursive call #1



And just like that, we're actually almost finished. The only sticking point here is a few helper
functions. Three of these are simple:

Now we have to determine the minimum on this interval. Let's do this in the most naive way, by
scanning the whole interval with a fold.

And now we're done! As an exercise you can head to this unit test module and write some HUnit
tests for this function. Write a few basic tests at first, and then incorporate a test case for the
input10000 and output10000 expressions in the file. Run the tests with this command:

      leftCase = largestRectangleAtIndices values (FenceInterval (leftIndex, minIndex))
      -- Guard against case where there is no "right" interval
      rightCase = if minIndex + 1 == rightIndex
        then FenceSolution (minBound :: Int) -- Supply a "fake" solution that we'll ignore
        -- Recursive call #2
        else largestRectangleAtIndices values (FenceInterval (minIndex + 1, rightIndex))

valueAtIndex :: FenceValues -> FenceIndex -> Int
valueAtIndex values index = (unFenceValues values) !! (unFenceIndex index)

isBaseInterval :: FenceInterval -> Bool
isBaseInterval (FenceInterval (FenceIndex left, FenceIndex right)) = left + 1 >= right

intervalSize :: FenceInterval -> Int
intervalSize (FenceInterval (FenceIndex left, FenceIndex right)) = right - left

minimumHeightIndexValue :: FenceValues -> FenceInterval -> (FenceIndex, Int)
minimumHeightIndexValue values (FenceInterval (FenceIndex left, FenceIndex right)) =
  foldl minTuple (FenceIndex (-1), maxBound :: Int) valsInInterval
  where
    valsInInterval :: [(FenceIndex, Int)]
    valsInInterval = drop left (take right (zip (FenceIndex <$> [0..]) (unFenceValues values)))
    minTuple :: (FenceIndex, Int) -> (FenceIndex, Int) -> (FenceIndex, Int)
    minTuple old@(_, heightOld) new@(_, heightNew) =
      if heightNew < heightOld then new else old

>> stack build Testing:test:fences-tests



Now, this is a neat little algorithmic solution, but we want to know if our code is efficient. We need
to know if it will scale to larger input values. If you incorporated the size-10000 example into your
unit tests, you may have found that the test suite is suddenly quite a bit slower.

We can find the answer to these performance questions by writing benchmarks. Benchmarks are a
feature we can use in conjunction with Cabal and Stack. They work a lot like test suites. But instead
of proving the correctness of our code, they'll show us how fast our code runs under various
circumstances. We'll use the Criterion library to do this. We'll start by adding a section in our .cabal
file for this benchmark:

Now we'll look at our FencesBenchmark file, make it a Main module and add a main function. We'll
start by generating 6 lists, increasing in size by a factor of 10 each time.

BENCHMARKING OUR CODE

benchmark fences-benchmark
  type:                exitcode-stdio-1.0
  hs-source-dirs:      benchmark
  main-is:             FencesBenchmark.hs
  build-depends:       base
                     , Testing
                     , criterion
                     , random
  default-language:    Haskell2010

module Main where

import Criterion
import Criterion.Main (defaultMain)
import System.Random

import Fences

main :: IO ()
main = do
  [l1, l2, l3, l4, l5, l6] <- mapM 
    randomList [1, 10, 100, 1000, 10000, 100000]



Now the syntax for the Criterion library is a lot like HUnit in many respects. It has a defaultMain
function. The Benchmark type is a lot like the TestTree type. We can create a single Benchmark
using the bench expression, and combine a group of them with bGroup:

The difference is that instead of filling in each case with a test predicate assertion, we can fill it in
with a Benchmarkable element. We create these by taking a code expression we want to
benchmark (like a call to largestRectangle) and passing it to the whnf function.

  ...

-- Generate a list of a particular size
randomList :: Int -> IO FenceValues
randomList n = FenceValues <$> (sequence $ replicate n (randomRIO (1, 10000 :: Int)))

main :: IO ()
main = do
  [l1, l2, l3, l4, l5, l6] <- mapM 
    randomList [1, 10, 100, 1000, 10000, 100000]
  defaultMain
    [ bgroup "fences tests" 
      [ bench "Size 1 Test" $ ...
      , bench "Size 10 Test" $ ...
      ]
    ]

main :: IO ()
main = do
  [l1, l2, l3, l4, l5, l6] <- mapM 
    randomList [1, 10, 100, 1000, 10000, 100000]
  defaultMain
    [ bgroup "fences tests" 
      [ bench "Size 1 Test" $ whnf largestRectangle l1
      , bench "Size 10 Test" $ whnf largestRectangle l2
      , bench "Size 100 Test" $ whnf largestRectangle l3
      , bench "Size 1000 Test" $ whnf largestRectangle l4
      , bench "Size 10000 Test" $ whnf largestRectangle l5
      , bench "Size 100000 Test" $ whnf largestRectangle l6
      ]
    ]



That's all there is to it really! We're ready to run our benchmark now. We'd normally run all our
benchmarks with stack bench (or cabal bench if you're not using Stack). And you can run an
individual benchmark set similar to an individual test set:

But we can also compile our code with the --profile flag. This will automatically create a profiling
report with more information about our code. Note using profiling requires re-compiling ALL the
dependencies to use profiling as well. So you don't want to switch back and forth a lot.

>> stack build Testing:bench:fences-benchmark

>> stack build Testing:bench:fences-benchmark --profile
Benchmark fences-benchmark: RUNNING...
benchmarking fences tests/Size 1 Test
time                 47.79 ns   (47.48 ns .. 48.10 ns)
                     1.000 R²   (0.999 R² .. 1.000 R²)
mean                 47.78 ns   (47.48 ns .. 48.24 ns)
std dev              1.163 ns   (817.2 ps .. 1.841 ns)
variance introduced by outliers: 37% (moderately inflated)

benchmarking fences tests/Size 10 Test
time                 3.324 μs   (3.297 μs .. 3.356 μs)
                     0.999 R²   (0.999 R² .. 1.000 R²)
mean                 3.340 μs   (3.312 μs .. 3.368 μs)
std dev              98.52 ns   (79.65 ns .. 127.2 ns)
variance introduced by outliers: 38% (moderately inflated)

benchmarking fences tests/Size 100 Test
time                 107.3 μs   (106.3 μs .. 108.2 μs)
                     0.999 R²   (0.999 R² .. 0.999 R²)
mean                 107.2 μs   (106.3 μs .. 108.4 μs)
std dev              3.379 μs   (2.692 μs .. 4.667 μs)
variance introduced by outliers: 30% (moderately inflated)

benchmarking fences tests/Size 1000 Test
time                 8.724 ms   (8.596 ms .. 8.865 ms)
                     0.998 R²   (0.997 R² .. 0.999 R²)
mean                 8.638 ms   (8.560 ms .. 8.723 ms)
std dev              228.8 μs   (193.6 μs .. 272.8 μs)



So when we run this, we'll find something...troubling. It takes a looong time to run the final
benchmark on size 100000. On average, this case takes over 100 seconds...more than a minute
and a half! We can further take note of how the average run time increases based on the size of
the case. Let's pare down the data a little bit:

Each time we increase the size of the problem by a factor of 10, the time spent increased by a
factor closer to 100! This suggests our run time is O(n^2) (check out this guide if you are
unfamiliar with Big-O notation). We'd like to do better.

So we want to figure out why our code isn't performing very well. Luckily, we already profiled our
benchmark!. This outputs a specific file that we can look at, called fences-benchmark.prof. It has
some very interesting results:

benchmarking fences tests/Size 10000 Test
time                 909.2 ms   (899.3 ms .. 914.1 ms)
                     1.000 R²   (1.000 R² .. 1.000 R²)
mean                 915.1 ms   (914.6 ms .. 915.8 ms)
std dev              620.1 μs   (136.0 as .. 664.8 μs)
variance introduced by outliers: 19% (moderately inflated)

benchmarking fences tests/Size 100000 Test
time                 103.9 s    (91.11 s .. 117.3 s)
                     0.997 R²   (0.997 R² .. 1.000 R²)
mean                 107.3 s    (103.7 s .. 109.4 s)
std dev              3.258 s    (0.0 s .. 3.702 s)
variance introduced by outliers: 19% (moderately inflated)

Benchmark fences-benchmark: FINISH

Size 1: 47.78 ns
Size 10: 3.340 μs (increased ~70x)
Size 100: 107.2 μs (increased ~32x)
Size 1000: 8.638 ms (increased ~81x)
Size 10000: 915.1 ms (increased ~106x)
Size 100000: 107.3 s (increased ~117x)

DETERMINING THE PROBLEM



We see that we have two big culprits taking a lot of time. First, there is our function that
determines the minimum between a specific interval. The report is even more specific, calling out
the specific offending part of the function. We spend a lot of time getting the different values for a
specific interval. In second place, we have valueAtIndex. This means we also spend a lot of time
getting values out of our list.

First let's be glad we've factored our code well. If we had written our entire solution in one big
function, we wouldn't have any leads here. This makes it much easier for us to analyze the
problem. When examining the code, we see why both of these functions could produce O(n^2)
behavior.

Due to the number of recursive calls we make, we'll call each of these functions O(n) times. Then
when we call valueAtIndex, we use the (!!) operator on our linked list. This takes O(n) time.
Scanning the whole interval for the minimum height has the same effect. In the worst case, we
have to look at every element in the list! I'm hand waving a bit here, but that is the basic result.
When we call these O(n) pieces O(n) times, we get O(n^2) time total.

We can actually solve this problem in O(n log n) time, a dramatic improvement over the current
O(n^2). But we'll have to improve our data structures to accomplish this. First, we'll store our
values so that we can go from the index to the element in sub-linear time. This is easy. Second, we
have to determine the index containing the minimum element within an arbitrary interval. This is a
bit trickier to do in sub-linear time. We'll need a more advanced data structure. To see how this all
works, you'll need to check out part 3, the grand finale of this series!

As a reminder, you shold take a look at our mini-course on Stack. It'll teach you the basics of laying
out a project and running commands on it using the Stack tool. You should enroll in the Monday
Morning Haskell Academy to sign up! Once you know about Stack, it'll be a lot easier to try this
problem out for yourself!

COST CENTRE                            MODULE SRC                 %time %alloc
minimumHeightIndexValue.valsInInterval Lib    src/Lib.hs:45:5-95   69.8   99.7
valueAtIndex                           Lib    src/Lib.hs:51:1-74   29.3    0.0

CLIFF HANGER ENDING



In addition to Stack, recursion also featured pretty heavily in our solution here. If you've done any
amount of functional programming you've seen recursion in action. But if you want to solidify your
knowledge, you should download our Recursion Workbook! It has two chapters worth of content on
recursion and it has 10 practice problems you can work through! It also has a full test suite already,
so you can use incremental test driven development!



Welcome to the third and final part of our Haskell testing series! In part 2, we wrote a solution to
the "largest rectangle" problem. We implemented benchmarks to determine how well our code
performs on certain inputs. First we used the Criterion library to get some measurements for our
code. Then we were able to look at those measurements in some spiffy output. We also profiled our
code to try to determine what part was slowing us down.

The profiling output highlighted two functions that were taking an awful lot of time. When we
analyzed them, we found they were very inefficient. In this article, we'll resolve those problems and
improve our code in a couple different ways. First, we'll use an array rather than a list to make our
value accesses faster. Then, we'll add a cool data structure called a segment tree. This will help us
to quickly get the smallest height value over a particular interval.

The code examples in this article series make good use of the Stack tool. If you've never used
Stack before, you should check out our FREE Stack mini-course. It'll walk you through the basics of
organizing your code, getting dependencies, and running commands.

Hopefully you've been following the Github Repository for this series! The improved code for this
article can be found in the FencesFast module! You can also try re-doing some of these examples
for yourself in a Test-Driven-Development style by working in this practice module with these unit
tests!

So first let's take some time to remind ourselves why our solution was inefficient. Both our
minimum height function and our "value at index" function ran in O(n) time. This means each of
them could scan the entire list in the worst case. Next we observed that both of these functions will
get called O(n) times. Thus our total algorithm will be O(n^2) time. The time benchmarks we took

Improving Performance with
Data Structures

WHAT WENT WRONG?



backed up this theory. Increasing our input size by a factor of 10 would often result in the solution
taking 100 times longer.

The data structures we mentioned in the intro will help us get the values we need without doing a
full scan. We'll start with the easier step, substituting an array for our list of values.

Linked lists are very common when we're solving functional programming problems. They have
some nice properties, and work very well with recursion. However, they do not allow fast access by
index. For these situations, we need to use arrays. Arrays aren't as common in Haskell as other
languages, and there are a few differences.

First, Haskell arrays have two type parameters. When you make an array in Java, you say whether
it's an int array (int[]) or a string array (String[]), or whatever other type. So this is only a single
parameter. Whenever we want to index into the array, we always use integers.

In Haskell, we get to choose both the type that the array stores AND the type that indexes the
array. Now, the indexing type has to belong to the index (Ix) typeclass. And in this case we'll be
using Int anyways. But it's cool to know that you have more flexibility. For instance, consider
representing a matrix. In Java, we have to use an "array of arrays". This involves a lot of awkward
syntax. In Haskell, we can instead use a single array indexed by tuples of integers! Accessing a
Matrix with index (2, 1) feels a bit more natural than matrix[2][1]. We could also do something like
index from 1 instead of 0 if the situation called for it.

So for our problem, we'll use Array Int Int for our inner fence values instead of a normal list. We'll
only need to make a few code changes though! First, we'll import a couple modules and change
our type to use the array:

ARRAYS

import Data.Array
import Data.Ix (range)

...

newtype FenceValues = FenceValues { unFenceValues :: Array Int Int }



Next, instead of using (!!) to access by index, we'll use the specialized array index (!) operator to
access them.

Finally, let's improve our minimumHeight function. We'll now use the range function on our array
instead of resorting to drop and take. Note we now use right - 1 since we want to exclude the right
endpoint of the interval.

We'll also have to change our benchmarking code to produce arrays instead of lists. (You can see
these updates in the Fast benchmark:

Both our library and our benchmark now need to use array in their build-depends section of the
Cabal file. We need to make sure we add this! Once we have, we can benchmark our code again,
and we'll find it's already sped up quite a bit!

valueAtIndex :: FenceValues -> FenceIndex -> Int
valueAtIndex values index = (unFenceValues values) ! (unFenceIndex index)

where
  valsInInterval :: [(FenceIndex, Int)]
  valsInInterval = zip 
    (FenceIndex <$> intervalRange) 
    (map ((unFenceValues values) !) intervalRange)
    where
      intervalRange = range (left, right - 1)

import Data.Array (listArray)

...

randomList :: Int -> IO FenceValues
randomList n = FenceValues . mkListArray <$> 
  (sequence $ replicate n (randomRIO (1, 10000 :: Int)))
  where
    mkListArray vals = listArray (0, (length vals) - 1) vals

>> stack build Testing:bench:fences-fast-benchmark --profile
Running 1 benchmarks...
Benchmark fences-fast-benchmark: RUNNING...
benchmarking fences tests/Size 1 Test



time                 49.33 ns   (48.98 ns .. 49.71 ns)
                     1.000 R²   (0.999 R² .. 1.000 R²)
mean                 49.46 ns   (49.16 ns .. 49.86 ns)
std dev              1.105 ns   (861.0 ps .. 1.638 ns)
variance introduced by outliers: 33% (moderately inflated)

benchmarking fences tests/Size 10 Test
time                 4.541 μs   (4.484 μs .. 4.594 μs)
                     0.999 R²   (0.998 R² .. 1.000 R²)
mean                 4.496 μs   (4.456 μs .. 4.531 μs)
std dev              132.0 ns   (109.6 ns .. 164.3 ns)
variance introduced by outliers: 36% (moderately inflated)

benchmarking fences tests/Size 100 Test
time                 79.81 μs   (79.21 μs .. 80.45 μs)
                     0.999 R²   (0.999 R² .. 1.000 R²)
mean                 79.51 μs   (78.93 μs .. 80.39 μs)
std dev              2.396 μs   (1.853 μs .. 3.449 μs)
variance introduced by outliers: 29% (moderately inflated)

benchmarking fences tests/Size 1000 Test
time                 1.187 ms   (1.158 ms .. 1.224 ms)
                     0.995 R²   (0.992 R² .. 0.998 R²)
mean                 1.170 ms   (1.155 ms .. 1.191 ms)
std dev              56.61 μs   (48.02 μs .. 70.28 μs)
variance introduced by outliers: 37% (moderately inflated)

benchmarking fences tests/Size 10000 Test
time                 15.03 ms   (14.71 ms .. 15.32 ms)
                     0.997 R²   (0.994 R² .. 0.999 R²)
mean                 15.71 ms   (15.44 ms .. 16.03 ms)
std dev              729.7 μs   (569.3 μs .. 965.4 μs)
variance introduced by outliers: 16% (moderately inflated)

benchmarking fences tests/Size 100000 Test
time                 191.4 ms   (189.2 ms .. 193.9 ms)
                     1.000 R²   (1.000 R² .. 1.000 R²)
mean                 189.3 ms   (188.2 ms .. 190.5 ms)
std dev              1.471 ms   (828.0 μs .. 1.931 ms)
variance introduced by outliers: 14% (moderately inflated)



Here's what the multiplicative factors are:

For the later cases, increasing size by a factor 10 seems to only increase the time by a factor of 13-
15. We could be forgiven for thinking we have achieved O(n log n) time already!

But something still doesn't sit right. We have to remember that the theory doesn't quite justify our
excitement here. In fact our old code was so bad that the NORMAL case was O(n^2). Now it seems
like we may have gotten O(n log n) for the average case. But we want to prepare for the worst case
if we can. In this situation, our code will not be so performant when the lists of input heights is
sorted!

Benchmark fences-fast-benchmark: FINISH

Size 1: 49.33 ns
Size 10: 4.451 μs (increased ~90x)
Size 100: 79.81 μs (increased ~18x)
Size 1000: 1.187 ms (increased ~15x)
Size 10000: 15.03 ms (increased ~13x)
Size 100000: 191.4 ms (increased ~13x)

DIFFERENT TEST CASES

main :: IO ()
main = do
  [l1, l2, l3, l4, l5, l6] <- mapM 
    randomList [1, 10, 100, 1000, 10000, 100000]
  let l7 = sortedList
  defaultMain
    [ bgroup "fences tests" 
       ...
      , bench "Size 100000 Test" $ whnf largestRectangle l6
      , bench "Size 100000 Test (sorted)" $ whnf largestRectangle l7
      ]
    ]

...



We'll once again find that this last case takes a loooong time, and we'll see a big spike in run time.

It averages more than 6 minutes per case! But this time, we'll see the profiling output has
changed. It only calls out various portions of minimumHeightIndexValue! We no longer spend a lot
of time in valueAtIndex.

So now we have to solve this new problem by improving our calculation of the minimum.

Our current approach still requires us to look at every element in our interval. Even though some of
our intervals will be small, there will be a lot of these smaller calls, so the total time is still O(n^2).

sortedList :: FenceValues
sortedList = FenceValues $ listArray (0, 99999) [1..100000]

>> stack build Testing:bench:fences-fast-benchmark --profile
Running 1 benchmarks...
Benchmark fences-fast-benchmark: RUNNING...

...

benchmarking fences tests/Size 100000 Test (sorted)
time                 378.1 s    (355.0 s .. 388.3 s)
                     1.000 R²   (0.999 R² .. 1.000 R²)
mean                 384.5 s    (379.3 s .. 387.2 s)
std dev              4.532 s    (0.0 s .. 4.670 s)
variance introduced by outliers: 19% (moderately inflated)

Benchmark fences-fast-benchmark: FINISH

COST CENTRE                                          %time %alloc

minimumHeightIndexValue.valsInInterval               65.0   67.7
minimumHeightIndexValue                              22.4    0.0
minimumHeightIndexValue.valsInInterval.intervalRange 12.4   32.2

SEGMENT TREES



We need a way to find the smallest item and value on a given interval without resorting to a linear
scan.

One idea would be to develop an exhaustive list of all the answers to this question right at the
start. We could make a mapping from all possible intervals to the smallest index and value in the
interval. But this won't help us in the end. There are still n^2 possible intervals. So creating this
data structure will still mean that our code takes O(n^2) time.

But we're on the right track with the idea of doing some of the work before hand. We'll have to use
a data structure that's not an exhaustive listing though. Enter segment trees.

A segment tree has the same structure as a binary search tree. Instead of storing a single value
though, each node corresponds to an interval. Each node will store its interval, the smallest value
over that interval, and the index of that value.

The top node on the tree will refer to the interval of the whole array. It'll store the pair for the
smallest value and index overall. Then it will have two children nodes. The left one will have the
minimum pair over the first half of the tree, and the right one will have the second half. The next
layer will break it up into quarters, and so on.

As an example, let's consider how we would determine the minimum pair starting from the first
quarter point and ending at the third quarter point. We'll do this using recursion. First, we'll ask the
left subtree for the minimum pair on the interval from the quarter point to the half point. Then we'll
query the right tree for the smallest pair from the half point to the three-quarters point. Then we
can take the smallest of those and return it. I won't go into all the theory here, but it turns out that
even in the worst case this operation takes O(log n) time.

There is a library called Data.SegmentTree on hackage. But our code is short and specialized
enough that we can do this from scratch. We'll compose our tree from SegmentTreeNodes. Each
node is either empty, or it contains six fields. The first two refer to the interval the node spans. The

DESIGNING OUR SEGMENT
TREE



next will be the minimum value and the index of that value over the interval. And then we'll have
fields for each of the children nodes of this node:

We could make this Segment Tree type a lot more generic so that it isn't restricted to our fence
problem. I would encourage you to take this code and try that as an exercise!

Now we'll add our preprocessing step where we'll actually build the tree itself. This will use the
same interval/tail pattern we saw before. In the base case, the interval's span is only 1, so we
make a node containing that value with empty sub-children. We'll also add a catchall that returns
an EmptyNode:

data SegmentTreeNode = ValueNode
  { fromIndex :: FenceIndex
  , toIndex :: FenceIndex
  , value :: Int
  , minIndex :: FenceIndex
  , leftChild :: SegmentTreeNode
  , rightChild :: SegmentTreeNode
  }
  | EmptyNode

BUILDING THE SEGMENT
TREE

buildSegmentTree :: Array Int Int -> SegmentTreeNode
buildSegmentTree ints = buildSegmentTreeTail 
  ints 
  (FenceInterval ((FenceIndex 0), (FenceIndex (length (elems ints)))))

buildSegmentTreeTail :: Array Int Int -> FenceInterval -> SegmentTreeNode
buildSegmentTreeTail array
  (FenceInterval (wrappedFromIndex@(FenceIndex fromIndex), wrappedToIndex@(FenceIndex toIndex)))
  | fromIndex + 1 == toIndex = ValueNode 
      { fromIndex = wrappedFromIndex
      , toIndex = wrappedToIndex



Now our middle case will be the standard case. First we'll divide our interval in half and make two
recursive calls.

Next we'll write a function that'll extract the minimum value and index, but handle the empty node
case. This provided maxBound as the "minimum" so comparisons will always favor the non-empty
nodes:

Now, back in buildSegmentTreeTail, we'll compare the three cases for the minimum. It'll likely be
the values from the left or the right. Otherwise it's the current value.

      , value = array ! fromIndex
      , minIndex = wrappedFromIndex
      , leftChild = EmptyNode
      , rightChild = EmptyNode
      }
  | ... TODO
  | otherwise = EmptyNode

where 
  average = (fromIndex + toIndex) `quot` 2
  -- Recursive Calls
  leftChild = buildSegmentTreeTail 
    array (FenceInterval (wrappedFromIndex, (FenceIndex average)))
  rightChild = buildSegmentTreeTail 
    array (FenceInterval ((FenceIndex average), wrappedToIndex))

-- Get minimum val and index, but account for empty case.
valFromNode :: SegmentTreeNode -> (Int, FenceIndex)
valFromNode EmptyNode = (maxBound :: Int, FenceIndex (-1))
valFromNode n@ValueNode{} = (value n, minIndex n)

where
  ...
  leftCase = valFromNode leftChild
  rightCase = valFromNode rightChild
  currentCase = (array ! fromIndex, wrappedFromIndex)
  (newValue, newIndex) = min (min leftCase rightCase) currentCase



Finally we'll complete our definition by filling in the missing variables in the middle/normal case.
You can look at the complete definition here:

Now let's write the critical function of finding the minimum over the given interval. This will be like
our slower version, but we'll add our tree as another parameter. Then we'll handle the EmptyNode
case in the same way as above. Then we can unwrap our values for the full case:

buildSegmentTreeTail :: Array Int Int -> FenceInterval -> SegmentTreeNode
buildSegmentTreeTail array
  (FenceInterval (wrappedFromIndex@(FenceIndex fromIndex), wrappedToIndex@(FenceIndex toIndex)))
  | ... -- base case
  | fromIndex < toIndex = ValueNode 
    { fromIndex = wrappedFromIndex
    , toIndex = wrappedToIndex
    , value = newValue
    , minIndex = newIndex
    , leftChild = leftChild
    , rightChild = rightChild
    }
  | otherwise = EmptyNode
    where 
      average = ...
      leftChild = ...
      rightChild = ...

      leftCase = valFromNode leftChild
      rightCase = valFromNode rightChild
      currentCase = (array ! fromIndex, wrappedFromIndex)
      (newValue, newIndex) = min (min leftCase rightCase) currentCase

valFromNode :: SegmentTreeNode -> (Int, FenceIndex)
valFromNode = ...

FINDING THE MINIMUM

minimumHeightIndexValue :: FenceValues -> SegmentTreeNode -> FenceInterval -> (FenceIndex, Int)
minimumHeightIndexValue values tree 



The first case we'll handle is that the current node exactly matches the interval we are passed.
Obviously we can simply supply the value and index here:

Next we'll observe two cases that will need only one recursive call. If the right index is below the
midway point, we recursively call to the left sub-child. And if the left index is above the midway
point, we'll call on the right side (we'll calculate the average later).

  originalInterval@(FenceInterval (FenceIndex left, FenceIndex right)) =
  case tree of
    EmptyNode -> (maxBound :: Int, -1)
    ValueNode
      { fromIndex = FenceIndex nFromIndex
      , toIndex = FenceIndex nToIndex
      , value = nValue
      , minIndex = nMinIndex
      , leftChild = nLeftChild
      , rightChild = nRightChild} -> ...

case tree of
  ValueNode
    { fromIndex = FenceIndex nFromIndex
    , toIndex = FenceIndex nToIndex
    , value = nValue
    , minIndex = nMinIndex
    , ... } -> if left == nFromIndex && right == nToIndex 
      then (nMinIndex, nValue)
      else ...

case tree of
  ValueNode
    { ... } -> if left == nFromIndex && right == nToIndex 
      then (nMinIndex, nValue)
      else if right < average 
        then minimumHeightIndexValue values nLeftChild originalInterval
        else if left >= average
          then minimumHeightIndexValue values nRightChild originalInterval
          else ...
        where
          average = (nFromIndex + nToIndex) `quot` 2



Finally we have the tricky part. If the interval does cross the halfway mark, we'll have to divide it
into two sub-intervals. Then we'll make two recursive calls, and get their solutions. Finally, we'll
compare the two solutions and take the smaller one. This requires the definition of one more helper
function minTuple, to compare indices by their corresponding heights.

Again, you can see the complete function here.

Once we've accomplished this, the rest is pretty straightforward. First, we'll build our segment tree
at the beginning and pass it as a parameter to our function. Then we'll plug in our new minimum
function in place of the old one. We'll make sure to add the tree to each recursive call as well.

case tree of
  ValueNode
    { ... } -> if left == nFromIndex && right == nToIndex 
      then (nMinIndex, nValue)
      else if right < average 
        then ... -- left recursive case
        else if left >= average
          then ... -- right recursive case
          else minTuple leftResult rightResult
        where
          average = (nFromIndex + nToIndex) `quot` 2
          leftResult = minimumHeightIndexValue values nLeftChild
            (FenceInterval (FenceIndex left, FenceIndex average))
          rightResult = minimumHeightIndexValue values nRightChild
            (FenceInterval (FenceIndex average, FenceIndex right))
          minTuple :: (FenceIndex, Int) -> (FenceIndex, Int) -> (FenceIndex, Int)
          minTuple old@(_, heightOld) new@(_, heightNew) =
            if heightNew < heightOld then new else old

TOUCHING UP THE REST

largestRectangle :: FenceValues -> FenceSolution
largestRectangle values = largestRectangleAtIndices values 
  (buildSegmentTree (unFenceValues values))
  (FenceInterval (FenceIndex 0, FenceIndex (length (unFenceValues values))))



And now we can run our benchmark again. This time, we'll see that our code runs a great deal
faster on both large cases! Success!

So in this series, we learned a whole lot. In part 1, we talked about the basic ideas behind test
driven development and some Haskell unit testing libraries. In part 2, we then covered how to

...
-- Notice the extra parameter
largestRectangleAtIndices :: FenceValues -> SegmentTreeNode -> FenceInterval -> FenceSolution
largestRectangleAtIndices
  values
  tree
...
      where
      ...
      -- And down here add it to each call
      (minIndex, minValue) = minimumHeightIndexValue values tree interval
      leftCase = largestRectangleAtIndices values tree (FenceInterval (leftIndex, minIndex))
      rightCase = if minIndex + 1 == rightIndex
        then FenceSolution (maxBound :: Int)
        else largestRectangleAtIndices values tree (FenceInterval (minIndex + 1, rightIndex))

benchmarking fences tests/Size 100000 Test
time                 179.1 ms   (173.5 ms .. 185.9 ms)
                     0.999 R²   (0.998 R² .. 1.000 R²)
mean                 184.1 ms   (182.7 ms .. 186.1 ms)
std dev              2.218 ms   (1.197 ms .. 3.342 ms)
variance introduced by outliers: 14% (moderately inflated)

benchmarking fences tests/Size 100000 Test (sorted)
time                 238.4 ms   (227.2 ms .. 265.1 ms)
                     0.998 R²   (0.989 R² .. 1.000 R²)
mean                 243.5 ms   (237.0 ms .. 251.8 ms)
std dev              8.691 ms   (2.681 ms .. 11.83 ms)
variance introduced by outliers: 16% (moderately inflated)

CONCLUSION



create benchmarks for our code using Cabal/Stack. When we ran those benchmarks, we found
results took longer than we would like. We then used profiling to determine what the problematic
functions were.

To solve the problems we found, we dove head-first into some data structures knowledge. We saw
first hand how changing the underlying data structures of our program could improve our
performance. We also learned about arrays, which are somewhat overlooked in Haskell. Then we
built a segment tree from scratch and used its API to enable our program's improvements.

If you want some extra practice with Test Driven Development, benchmarks, and our Fence
example, you can take a look at our practice module and corresponding practice test suite. You can
solve the most important parts of the algorithm using TDD and writing your test cases as you go
along!

This problem involved many different uses of recursion. If you want to become a better functional
programmer, you'd better learn recursion. If you want a better grasp of this fundamental concept,
you should check out our free Recursion Workbook. It has two chapters of useful information as
well as 10 practice problems!

Finally, be sure to check out our Stack mini-course. Once you've mastered the Stack tool, you'll be
well on your way to making Haskell projects like a Pro!


