
Если вы видите что-то необычное, просто сообщите мне.

Haskell is an excellent language for all your parsing needs. The functional nature of the language
makes it easy to compose different building blocks together without worrying about nasty side
effects and unforeseen consequences. Since the language is so well-suited for parsing, there are
several different libraries out there. Each of them differ a bit in their approaches. We'll explore
three libraries in this series.

Parsing Primer: Gherkin Syntax
Applicative Parsing
Attoparsec
Megaparsec

Parsing with Haskell



Haskell is a truly awesome language for parsing. Haskell expressions tend to compose in simple
ways with very clearly controlled side effects. This provides an ideal environment in which to break
down parsing into simpler tasks. Thus there are many excellent parsing libraries out there.

In this series, we'll be taking a tour of some of these libraries. But before we look at specific code, it
will be useful to establish a common example for what we're going to be parsing. In this first part,
I'll introduce Gherkin Syntax, the language behind the Cucumber framework. We'll go through the
language specifics, then show the basics of how we set ourselves up for success in Haskell.

If you're already familiar with Gherkin syntax, feel free to move on to part 2 of this series! Or if you
want to challenge yourself with more libraries to learn, you can download our Production Checklist.
It'll give you a survey of libraries for many different tasks!

Like some of our other series, there's a Github Repository that has all the code for these tutorials!
You can observe some Gherkin examples in this directory. We'll compose our Haskell types in this
module.

Cucumber is a framework for Behavior Driven Development. Under BDD, we first describe all the
general behaviors we want our code to perform in plain language. This paradigm is an alternative
to Test Driven Development. There, we use test cases to determine our next programming
objectives. But BDD can do both of these if we can take behavior descriptions and automatically
create tests from them! This would allow less technical members of a project team to effectively
write tests!

Parsing Primer: Gherkin
Syntax

GHERKIN BACKGROUND



The main challenge of this is formalizing a language for describing these behaviors. If we have a
formal language, then we can parse it. If we can parse it into a reasonable structure, then we can
turn that structure into runnable test code. This series will focus on the second part of this problem:
turning Gherkin Syntax into a data structure (a Haskell data structure, in our case).

Gherkin syntax has many complexities, but for these articles we'll be focusing on the core elements
of it. The behaviors you want to test are broken down into a series of features. We describe each
feature in its own .feature file. So our overarching task is to read input from a single file and turn it
into a Feature object.

We begin our description of a feature with the Feature keyword (obviously). We'll give it a title, and
then give it an indented description (our example will be a simple banking app):

Each feature then has a series of scenarios. These describe specific cases of what can happen as
part of this feature. Each scenario begins with the Scenario keyword and a title.

Each scenario then has a series of Gherkin statements. These statements begin with one of the
keywords Given, When, Then, or And. You should use Given statements to describe pre-conditions
of the scenario. Then you'll use When to describe the particular action a user is taking to initiate

GHERKIN SYNTAX

Feature: Registering a User
  As a potential user
  I want to be able to create an account with a username,
    email and password
  So that I can start depositing money into my account

Scenario: Successful registration
  ...

Scenario: Email is already taken
  ...

Scenario: Username is already taken
  ...



the scenario. And finally, you'll use Then to describe the after effects.

Gherkin syntax does not enforce that you use the different keywords in a semantically sound way.
We could start every statement with Given and it would still work. But obviously you should do
whatever you can to make your tests sound correct.

We can also fill in statements with variables in angle brackets. We'll then follow the scenario with a
table of examples for those variables:

Scenario: Email is already taken
  Given there is already an account with the email "test@test.com"
  When I register an account with username "test",
    email "test@test.com" and password "1234abcd!?"
  Then it should fail with an error:
    "An account with that email already exists"
You can supplement any of these cases with a statement beginning with And.

Scenario: Email is already taken
  Given there is already an account with the email "test@test.com"
  And there is already an account with the username "test"
  When I register an account with username "test",
    email "test@test.com" and password "1234abcd!?"
  Then it should fail with an error: 
    "An account with that email already exists"
  And there should still only be one account with 
    the email "test@test.com"

Scenario: Successful Registration
  Given There is no account with username <username>
    or email <email>
  When I register the account with username <username>,
    email <email> and password <password>
  Then it should successfully create the account
    with <username>, <email>, and <password>
  Examples:
    | username | email              | password      |
    | john doe | john@doe.com       | ABCD1234!?    |
    | jane doe | jane.doe@gmail.com | abcdefgh1.aba |
    | jackson  | jackson@yahoo.com  | cadsw4ll0p/   |



We can also create a Background for the whole feature. This is a scenario-like description of
preconditions that exist for every scenario in that feature. This can also have an example table:

And that's the whole language we're going to be working with!

Let's appreciate now how easy it is to create data structures in Haskell to represent this syntax.
We'll start with a description of a Feature. It has a title, description (which we'll treat as a list of
multiple lines), the background, and then a list of scenarios. We'll also treat the background like a
"nameless" scenario that may or may not exist:

Now let's describe what a Scenario is. It's main components are its title and a list of statements.
We'll also observe that we should have some kind of structure for the list of examples we'll provide:

Feature: User Log In
  ...

Background:
  Given: There is an existing user with username <username>,
    email <email> and password <password>
  Examples:
    | username | email              | password      |
    | john doe | john@doe.com       | ABCD1234!?    |
    | jane doe | jane.doe@gmail.com | abcdefgh1.aba |

HASKELL DATA STRUCTURES

data Feature = Feature
  { featureTitle :: String
  , featureDescription :: [String]
  , featureBackground :: Maybe Scenario
  , featureScenarios :: [Scenario]
  }

data Scenario = Scenario
  { scenarioTitle :: String
  , scenarioStatements :: [Statement]
  , scenarioExamples :: ExampleTable



This ExampleTable will store a list of possible keys as well as list of tuple maps. Each tuple will
contain keys and values. At the scale we're likely to be working at, it's not worth it to use a full
Map:

Now we'll have to define what we mean by a Value. We'll keep it simple and only use literal bools,
strings, numbers, and a null value:

And finally we'll describe a statement. This will have the string itself, as well as a list of variable
keywords to interpolate:

And that's all there is too it! We can put all these types in a single file and feel pretty good about
that. In Java or C++, we would want to make a separate file (or two!) for each type and there
would be a lot more boilerplate involved.

  }

data ExampleTable = ExampleTable
  { exampleTableKeys :: [String]
  , exampleTableExamples :: [[(String, Value)]]
  }

data Value =
  ValueNumber Scientific |
  ValueString String |
  ValueBool Bool |
  ValueNull

data Statement = Statement
  { statementText :: String
  , statementExampleVariables :: [String]
  }

GENERAL PARSING
APPROACH



Another reason we'll see that Haskell is good for parsing is the ease of breaking problems down
into smaller pieces. We'll have one function for parsing an example table, a different function for
parsing a statement, and so on. Then gluing these together will actually be slick and simple!

Now you can move on to part 2 where we'll actually look at how to start parsing this. The first
library we'll use is the regex-applicative parsing library. We'll see how we can get a lot of what we
want without even using a monadic context!

For some more ideas on parsing libraries you can use, check out our free Production Checklist. It
will tell you about different libraries for parsing as well as a great many other tasks, from data
structures to web APIs!

CONCLUSION



In part 1 of this series, we prepared ourselves for parsing by going over the basics of the Gherkin
Syntax. In this part, we'll be using Regular Expression (Regex) based, applicative parsing to parse
the syntax. We'll start by focusing on the fundamentals of this library and building up a vocabulary
of combinators to use. We'll make heavy use of the Applicative typeclass. If you need a refresher
on that, check out this article.

As we start coding, you can also follow along with the examples on Github here! Most of the code
here is in the RegexParser module.

If you're itching to try a monadic approach to parsing, be sure to check out part 3 of this series,
where we'll learn about the Attoparsec library. If you want to learn about a wider variety of
production utilities, download our Production Checklist. It summarizes many other useful libraries
for writing higher level Haskell.

So to start parsing, let's make some notes about our input format. First, we'll treat our input
feature document as a single string. We'll remove all empty lines, and then trim leading and
trailing whitespace from each line.

Applicative Parsing

GETTING STARTED

parseFeatureFromFile :: FilePath -> IO Feature
parseFeatureFromFile inputFile = do
  fileContents <- lines <$> readFile inputFile
  let nonEmptyLines = filter (not . isEmpty) fileContents
  let trimmedLines = map trim nonEmptyLines
  let finalString = unlines trimmedLines
  case parseFeature finalString of
    ...

...



This means a few things for our syntax. First, we don't care about indentation. Second, we ignore
extra lines. This means our parsers might allow certain formats we don't want. But that's OK
because we're trying to keep things simple.

With applicative based parsing, the main data type we'll be working with is called RE, for regular
expression. This represents a parser, and it's parameterized by two types:

The s type refers to the fundamental unit we'll be parsing. Since we're parsing our input as a single
String, this will be Char. Then the a type is the result of the parsing element. This varies from
parser to parser. The most basic combinator we can use is sym. This parses a single symbol of your
choosing:

To use an RE parser, we call the match function or its infix equivalent =~. These will return a Just
value if we can match the entire input string, and Nothing otherwise:

isEmpty :: String -> Bool
isEmpty = all isSpace

trim :: String -> String
trim input = reverse flippedTrimmed
  where
    trimStart = dropWhile isSpace input
    flipped = reverse trimStart
    flippedTrimmed = dropWhile isSpace flipped

THE RE TYPE

data RE s a = ...

sym :: s - > RE s s

parseLowercaseA :: RE Char Char
parseLowercaseA = sym 'a'

>> match parseLowercaseA "a"
Just 'a'



Naturally, we'll want some more complicated functionality. Instead of parsing a single input
character, we can parse any character that fits a particular predicate by using psym. So if we want
to read any character that was not a newline, we could do:

The string combinator allows us to match a particular full string and then return it:

We'll use this for parsing keywords, though we'll often end up discarding the "result".

Now the RE type is applicative. This means we can apply all kinds of applicative combinators over
it. One of these is many, which allows us to apply a single parser several times. Here is one
combinator that we'll use a lot. It allows us to read everything up until a newline and return the
resulting string:

Beyond this, we'll want to make use of the applicative <*> operator to combine different parsers.
We can also apply a pure function (or constructor) on top of those by using <$>. Suppose we have
a data type that stores two characters. Here's how we can build a parser for it:

>> "b" =~ parseLowercaseA
Nothing
>> "ab" =~ parseLowercaseA
Nothing -- (Needs to parse entire input)

PREDICATES AND STRINGS

parseNonNewline :: RE Char Char
parseNonNewline = psym (/= '\n')

readFeatureWord :: RE Char String
readFeatureWord = string "Feature"

APPLICATIVE COMBINATORS

readUntilEndOfLine :: RE Char String
readUntilEndOfLine = many (psym (/= '\n'))



We can also use <* and *>, which are cousins of the main applicative operator. The first one will
parse but then ignore the right hand parse result. The second discards the left side result.

Notice the last one fails because the parser needs to have both inputs! We'll come back to this idea
of failure in a second. But now that we know this technique, we can write a couple other useful
parsers:

data TwoChars = TwoChars Char Char

parseTwoChars :: RE Char TwoChars
parseTwoChars = TwoChars <$> parseNonNewline <*> parseNonNewline

...

>> match parseTwoChars "ab"
Just (TwoChars 'a' 'b')

parseFirst :: RE Char Char
parseFirst = parseNonNewline <* parseNonNewline

parseSecond :: RE Char Char
parseSecond = parseNonNewline *> parseNonnewline
>> match parseFirst "ab"
Just 'a'
>> match parseSecond "ab"
Just 'b'
>> match parseFirst "a"
Nothing

readThroughEndOfLine :: RE Char String
readThroughEndOfLine = readUntilEndOfLine <* sym '\n'

readThroughBar :: RE Char String
readThroughBar = readUntilBar <* sym '|'

readUntilBar :: RE Char String
readUntilBar = many (psym (\c -> c /= '|' && c /= '\n'))



The first will parse the rest of the line and then consume the newline character itself. The other
parsers accomplish this same task, except with the vertical bar character. We'll need these when
we parse the Examples section further down.

We introduced the notion of a parser "failing" up above. Of course, we need to be able to offer
alternatives when a parser fails! Otherwise our language will be very limited in its structure.
Luckily, the RE type also implements Alternative. This means we can use the <|> operator to
determine an alternative parser when one fails. Let's see this in action:

Of course, if ALL the options fail, then we'll still have a failing parser!

We'll need this to introduce some level of choice into our parsing system. For instance, it's up to
the user if they want to include a Background as part of their feature. So we need to be able to

ALTERNATIVES: DEALING
WITH PARSE FAILURE

parseFeatureTitle :: RE Char String
parseFeatureTitle = string "Feature: " *> readThroughEndOfLine

parseScenarioTitle :: RE Char String
parseScenarioTitle = string "Scenario: " *> readThroughEndOfLine

parseEither :: RE Char String
parseEither = parseFeatureTitle <|> parseScenarioTitle
>> match parseFeatureTitle "Feature: Login\n"
Just "Login"
>> match parseFeatureTitle "Scenario: Login\n"
Nothing
>> match parseEither "Scenario: Login\n"
Just "Login"

>> match parseEither "Random: Login\n"
Nothing



read the background if it's there or else move onto parsing a scenario.

In keeping with our approach from the last article, we're going to start with smaller elements of our
syntax. Then we can use these to build larger ones with ease. To that end, let's build a parser for
our Value type, the most basic data structure in our syntax. Let's recall what that looks like:

Since we have different constructors, we'll make a parser for each one. Then we can combine them
with alternative syntax:

Now our parsers for the null values and boolean values are easy. For each of them, we'll give a few
different options about what strings we can use to represent those elements. Then, as with the
larger parser, we'll combine them with <|>.

VALUE PARSER

data Value =
  ValueNull |
  ValueBool Bool |
  ValueString String |
  ValueNumber Scientific

valueParser :: RE Char Value
valueParser =
  nullParser <|>
  boolParser <|>
  numberParser <|>
  stringParser

nullParser :: RE Char Value
nullParser =
  (string "null" <|>
  string "NULL" <|>
  string "Null") *> pure ValueNull

boolParser :: RE Char Value
boolParser =
  trueParser *> pure (ValueBool True) <|> 



A decimal parser will read some numbers, then a decimal point, and then more numbers. We'll
insist there is at least one number after the decimal point.

Finally, for negative numbers, we'll read a negative symbol and then one of the other parsers:

  falseParser *> pure (ValueBool False)
  where
    trueParser = string "True" <|> string "true" <|> string "TRUE"
    falseParser = string "False" <|> string "false" <|> string "FALSE"
```haskell
Notice in both these cases we discard the actual string with *> and then return our constructor. We have to 
wrap the desired result with pure.

# NUMBER AND STRING VALUES
Numbers and strings are a little more complicated since we can't rely on hard-coded formats. In the case of 
numbers, we'll account for integers, decimals, and negative numbers. We'll ignore scientific notation for now. An 
integer is simple to parse, since we'll have many characters that are all numbers. We use some instead of many 
to enforce that there is at least one:
```haskell
numberParser :: RE Char Value
numberPaser = ...
  where
    integerParser = some (psym isNumber)

numberParser :: RE Char Value
numberPaser = ...
  where
    integerParser = some (psym isNumber)
    decimalParser = 
      many (psym isNumber) <*> sym '.' <*> some (psym isNumber)

numberParser :: RE Char Value
numberPaser = ...
  where
    integerParser = some (psym isNumber)
    decimalParser = 
      many (psym isNumber) <*> sym '.' <*> some (psym isNumber)
    negativeParser = sym '-' <*> (decimalParser <|> integerParser)



However, we can't combine these parsers as is! Right now, they all return different results! The
integer parser returns a single string. The decimal parser returns two strings and the decimal
character, and so on. In general, we'll want to combine each parser's results into a single string and
then pass them to the read function. This requires mapping a couple functions over our last two
parsers:

Now all our number parsers return strings, so we can safely combine them. We'll map the
ValueNumber constructor over the value we read from the string.

Note that order matters! If we put the integer parser first, we'll be in trouble! If we encounter a
decimal, the integer parser will greedily succeed and parse everything before the decimal point.
We'll either lose all the information after the decimal, or worse, have a parse failure.

The last thing we need to do is read a string. We need to read everything in the example cell until
we hit a vertical bar, but then ignore any whitespace. Luckily, we have the right combinator for
this, and we've even written a trim function already!

numberParser :: RE Char Value
numberPaser = ...
  where
    integerParser = some (psym isNumber)
    decimalParser = combineDecimal <$> 
      many (psym isNumber) <*> sym '.' <*> some (psym isNumber)
    negativeParser = (:) <$> 
      sym '-' <*> (decimalParser <|> integerParser)

    combineDecimal :: String -> Char -> String -> String
    combineDecimal base point decimal = base ++ (point : decimal)

numberParser :: RE Char Value
numberPaser = (ValueNumber . read) <$>
  (negativeParser <|> decimalParser <|> integerParser)
  where
    ...

stringParser :: RE Char Value
stringParser = (ValueString . trim) <$> readUntilBar



And now our valueParser will work as expected!

Now that we can parse individual values, let's figure out how to parse the full example table. We
can use our individual value parser to parse a whole line of values! The first step is to read the
vertical bar at the start of the line.

Next, we'll build a parser for each cell. It will read the whitespace, then the value, and then read up
through the next bar.

Now we read many of these and finish by reading the newline:

Now, we need a similar parser that reads the title column of our examples. This will have the same
structure as the value cells, only it will read normal alphabetic strings instead of values.

BUILDING AN EXAMPLE
TABLE

exampleLineParser :: RE Char [Value]
exampleLineParser = sym '|' *> ...

exampleLineParser :: RE Char [Value]
exampleLineParser = sym '|' *> ...
  where
    cellParser = 
      many isNonNewlineSpace *> valueParser <* readThroughBar

isNonNewlineSpace :: RE Char Char
isNonNewlineSpace = psym (\c -> isSpace c && c /= '\n')

exampleLineParser :: RE Char [Value]
exampleLineParser = 
  sym '|' *> many cellParser <* readThroughEndOfLine
  where
    cellParser = 
      many isNonNewlineSpace *> valueParser <* readThroughBar



Now we can start building the full example parser. We'll want to read the string, the column titles,
and then the value lines.

Now we that we can parse the examples for a given scenario, we need to parse the Gherkin
statements. To start with, let's make a generic parser that takes the keyword as an argument.
Then our full parser will try each of the different statement keywords:

exampleColumnTitleLineParser :: RE Char [String]
exampleColumnTitleLineParser = sym '|' *> many cellParser <* readThroughEndOfLine
  where
    cellParser = 
      many isNonNewlineSpace *> many (psym isAlpha) <* readThroughBar

exampleTableParser :: RE Char ExampleTable
exampleTableParser =
  (string "Examples:" *> readThroughEndOfLine) *>
  exampleColumnTitleLineParser <*>
  many exampleLineParser
``
We're not quite done yet. We'll need to apply a function over these results that will produce the final 
ExampleTable. And the trick is that we want to map up the example keys with their values. We can accomplish 
this with a simple function. It will return zip the keys over each value list using map:
```haskell
exampleTableParser :: RE Char ExampleTable
exampleTableParser = buildExampleTable <$>
  (string "Examples:" *> readThroughEndOfLine) *>
  exampleColumnTitleLineParser <*>
  many exampleLineParser
  where
    buildExampleTable :: [String] -> [[Value]] -> ExampleTable
    buildExampleTable keys valueLists = ExampleTable keys (map (zip keys) valueLists)

STATEMENTS

parseStatementLine :: String -> RE Char Statement
parseStatementLine signal = ...



Now we'll get the signal word out of the way and parse the statement line itself.

Parsing the statement is tricky. We want to parse the keys inside brackets and separate them as
keys. But we also want them as part of the statement's string. To that end, we'll make two helper
parsers. First, nonBrackets will parse everything in a string up through a bracket (or a newline).

We'll also want a parser that parses the brackets and returns the keyword inside:

Now to read a statement, we start with non-brackets, and alternate with keys in brackets. Let's
observe that we start and end with non-brackets, since they can be empty. Thus we can represent
a line a list of non-bracket/bracket pairs, followed by a last non-bracket part. To make a pair, we
combine the parser results in a tuple using the (,) constructor enabled by TupleSections:

From here, we need a recursive function that will build up our final statement string and the list of
keys. We do this with buildStatement.

parseStatement :: RE Char Statement
parseStatement =
  parseStatementLine "Given" <|>
  parseStatementLine "When" <|>
  parseStatementLine "Then" <|>
  parseStatementLine "And"

parseStatementLine :: String -> RE Char Statement
parseStatementLine signal = string signal *> sym ' ' *> ...

nonBrackets :: RE Char String
nonBrackets = many (psym (\c -> c /= '\n' && c /= '<'))

insideBrackets :: RE Char String
insideBrackets = sym '<' *> many (psym (/= '>')) <* sym '>'

parseStatementLine :: String -> RE Char Statement
parseStatementLine signal = string signal *> sym ' ' *>
  many ((,) <$> nonBrackets <*> insideBrackets) <*> nonBrackets

parseStatementLine :: String -> RE Char Statement
parseStatementLine signal = string signal *> sym ' ' *>
  (buildStatement <$> 



The last thing we need is a final helper that will take the result of buildStatement and turn it into a
Statement. We'll call this finalizeStatement, and then we're done!

Now that we have all our pieces in place, it's quite easy to write the parser for scenario! First we
get the title by reading the keyword and then the rest of the line:

After that, we read many statements, and then the example table. Since the example table might
not exist, we'll provide an alternative that is a pure, empty table. We can wrap everything together

    many ((,) <$> nonBrackets <*> insideBrackets) <*> nonBrackets)
  where
    buildStatement :: 
      [(String, String)] -> String -> (String, [String])
    buildStatement [] last = (last, [])
    buildStatement ((str, key) : rest) rem =
      let (str', keys) = buildStatement rest rem
      in (str <> "<" <> key <> ">" <> str', key : keys)

parseStatementLine :: String -> RE Char Statement
parseStatementLine signal = string signal *> sym ' ' *>
  (finalizeStatement . buildStatement <$> 
    many ((,) <$> nonBrackets <*> insideBrackets) <*> nonBrackets)
  where
    buildStatement :: 
      [(String, String)] -> String -> (String, [String])
    buildStatement [] last = (last, [])
    buildStatement ((str, key) : rest) rem =
      let (str', keys) = buildStatement rest rem
      in (str <> "<" <> key <> ">" <> str', key : keys)

    finalizeStatement :: (String, [String]) -> Statement
    finalizeStatement (regex, variables) = Statement regex variables

SCENARIOS

scenarioParser :: RE Char Scenario
scenarioParser = string "Scenario: " *> readThroughEndOfLine ...



by mapping the Scenario constructor over it.

We can also make a "Background" parser that is very similar. All that changes is that we read the
string "Background" instead of a title. Since we'll hard-code the title as "Background", we can
include it with the constructor and map it over the parser.

We're almost done! All we have left is to write the featureParser itself! As with scenarios, we'll start
with the keyword and a title line:

Now we'll use the optional combinator to parse the Background if it exists, but return Nothing if it
doesn't. Then we'll wrap up with parsing many scenarios!

scenarioParser :: RE Char Scenario
scenarioParser = Scenario <$>
  (string "Scenario: " *> readThroughEndOfLine) <*>
  many (statementParser <* sym '\n') <*>
  (exampleTableParser <|> pure (ExampleTable [] []))

backgroundParser :: RE Char Scenario
backgroundParser = Scenario "Background" <$>
  (string "Background:" *> readThroughEndOfLine) *>
 many (statementParser <* sym '\n') <*>
  (exampleTableParser <|> pure (ExampleTable [] []))

FINALLY THE FEATURE

featureParser :: RE Char Feature
featureParser = Feature <$>
  (string "Feature: " *> readThroughEndOfLine) <*>
  ...

featureParser :: RE Char Feature
featureParser = Feature <$>
  (string "Feature: " *> readThroughEndOfLine) <*>
  pure [] <*>
  (optional backgroundParser) <*>
  (many scenarioParser)



Note that here we're ignoring the "description" of a feature we proposed as part of our original
syntax and simply giving an empty list of strings. Since there are no keywords for that, it turns out
to be painful to deal with it using applicative parsing. When we look at monadic approaches
starting next week, we'll see it isn't as hard there.

This wraps up our exploration of applicative parsing. We can see how well suited Haskell is for
parsing. The functional nature of the language means it's easy to start with small building blocks
like our first parsers. Then we can gradually combine them to make something larger. It can be a
little tricky to wrap our heads around all the different operators and combinators. But once you
understand the ways in which these let us combine our parsers, they make a lot of sense and are
easy to use.

You should now move onto part 3 of this series, where we will start learning about monadic
parsing. You'll get to see how we use the Attoparsec library to parse this same Gherkin syntax!

To further your knowledge of useful Haskell libraries, download our free Production Checklist! It will
tell you about libraries for many tasks, from databases to machine learning!

If you've never written a line of Haskell before, never fear! Download our Beginners Checklist to
learn more!

CONCLUSION



In part 2 of this series we looked at the Regex-based Applicative Parsing library. We took a lot of
smaller combinators and put them together to parse our Gherkin syntax (check out part 1 for a
quick refresher on that).

This week, we'll look at a new library: Attoparsec. Instead of trying to do everything with a purely
applicative structure, this library uses a monadic approach. This approach is much more common.
It results in syntax that is simpler to read and understand. It will also make it easier for us to add
certain features.

To follow along with the code for this article, take a look at the AttoParser module on Github! For
some more excellent ideas about useful libraries, download our Production Checklist! It includes
material on libraries for everything from data structures to machine learning!

Finally, if you already know about Attoparsec, feel free to move onto part 4 and learn about
Megaparsec!

In applicative parsing, all our parsers had the type RE Char. This type belonged to the Applicative
typeclass but was not a Monad. For Attoparsec, we'll instead be using the Parser type, a full
monad. So in general we'll be writing parsers with the following types:

Attoparsec

THE PARSER TYPE

featureParser :: Parser Feature
scenarioParser :: Parser Scenario
statementParser :: Parser Statement
exampleTableParser :: Parser ExampleTable
valueParser :: Parser Value

PARSING VALUES



The first thing we should realize though is that our parser is still an Applicative! So not everything
needs to change! We can still make use of operators like *> and <|>. In fact, we can leave our
value parsing code almost exactly the same! For instance, the valueParser, nullParser, and
boolParser expressions can remain the same:

If we wanted, we could make these more "monadic" without changing their structure. For instance,
we can use return instead of pure (since they are identical). We can also use >> instead of *> to
perform monadic actions while discarding a result. Our value parser for numbers changes a bit, but
it gets simpler! The authors of Attoparsec provide a convenient parser for reading scientific
numbers:

Then for string values, we'll use the takeTill combinator to read all the characters until a vertical
bar or newline. Then we'll apply a few text functions to remove the whitespace and get it back to a
String. (The Parser monad we're using parses things as Text rather than String).

valueParser :: Parser Value
valueParser =
  nullParser <|>
  boolParser <|>
  numberParser <|>
  stringParser

nullParser :: Parser Value
nullParser =
  (string "null" <|>
  string "NULL" <|>
  string "Null") *> pure ValueNull

boolParser :: Parser Value
boolParser = (trueParser *> pure (ValueBool True)) <|> (falseParser *> pure (ValueBool False))
  where
    trueParser = string "True" <|> string "true" <|> string "TRUE"
    falseParser = string "False" <|> string "false" <|> string "FALSE"

numberParser :: Parser Value
numberParser = ValueNumber <$> scientific



As we parse the example table, we'll switch to a more monadic approach by using do-syntax. First,
we establish a cellParser that will read a value within a cell.

Each line in our statement refers to a step of the parsing process. So first we skip all the leading
whitespace. Then we parse our value. Then we skip the remaining space, and parse the final
vertical bar to end the cell. Then we'll return the value we parsed.

It's a lot easier to keep track of what's going on here compared to applicative syntax. It's not hard
to see which parts of the input we discard and which we use. If we don't assign the value with <-
within do-syntax, we discard the value. If we retrieve it, we'll use it. To complete the
exampleLineParser, we parse the initial bar, get many values, close out the line, and then return
them:

stringParser :: Parser Value
stringParser = (ValueString . unpack . strip) <$> 
  takeTill (\c -> c == '|' || c == '\n')

PARSING EXAMPLES

cellParser = do
  skipWhile nonNewlineSpace
  val <- valueParser
  skipWhile (not . barOrNewline)
  char '|'
  return val

exampleLineParser :: Parser [Value]
exampleLineParser = do
  char '|'
  cells <- many cellParser
  char '\n'
  return cells
  where
    cellParser = ...



Reading the keys for the table is almost identical. All that changes is that our cellParser uses many
letter instead of valueParser. So now we can put these pieces together for our exampleTableParser:

We read the signal string "Examples:", followed by consuming the line. Then we get our keys and
values, and build the table with them. Again, this is much simpler than mapping a function like
buildExampleTable like in applicative syntax.

The Statement parser is another area where we can improve the clarity of our code. Once again,
we'll define two helper parsers. These will fetch the portions outside brackets and then inside
brackets, respectively:

Now when we put these together, we can more clearly see the steps of the process outlined in do-
syntax. First we parse the “signal” word, then a space. Then we get the “pairs” of non-bracketed
and bracketed portions. Finally, we'll get one last non-bracketed part:

exampleTableParser :: Parser ExampleTable
exampleTableParser = do
  string "Examples:"
  consumeLine
  keys <- exampleColumnTitleLineParser
  valueLists <- many exampleLineParser
  return $ ExampleTable keys (map (zip keys) valueLists)

STATEMENTS

nonBrackets :: Parser String
nonBrackets = many (satisfy (\c -> c /= '\n' && c /= '<'))

insideBrackets :: Parser String
insideBrackets = do
  char '<'
  key <- many letter
  char '>'
  return key



Now we can define our helper function buildStatement and call it on its own line in do-syntax. Then
we'll return the resulting Statement. This is much easier to read than tracking which functions we
map over which sections of the parser:

As with applicative parsing, it's now straightforward for us to finish everything off. To parse a
scenario, we read the keyword, consume the line to read the title, and read the statements and
examples:

parseStatementLine :: Text -> Parser Statement
parseStatementLine signal = do
  string signal
  char ' '
  pairs <- many ((,) <$> nonBrackets <*> insideBrackets)
  finalString <- nonBrackets
  ...

parseStatementLine :: Text -> Parser Statement
parseStatementLine signal = do
  string signal
  char ' '
  pairs <- many ((,) <$> nonBrackets <*> insideBrackets)
  finalString <- nonBrackets
  let (fullString, keys) = buildStatement pairs finalString
  return $ Statement fullString keys
  where
    buildStatement 
      :: [(String, String)] -> String -> (String, [String])
    buildStatement [] last = (last, [])
    buildStatement ((str, key) : rest) rem =
      let (str', keys) = buildStatement rest rem
      in (str <> "<" <> key <> ">" <> str', key : keys)

SCENARIOS AND FEATURES

scenarioParser :: Parser Scenario
scenarioParser = do
  string "Scenario: "



Again, we provide an empty ExampleTable as an alternative if there are no examples. The parser
for Background looks very similar. The only difference is we ignore the result of the line and instead
use Background as the title string.

Finally, we'll put all this together as a feature. We read the title, get the background if it exists, and
read our scenarios:

One extra feature we'll add now is that we can more easily parse the “description” of a feature. We
omitted them in applicative parsing, as it's a real pain to implement. It becomes much simpler
when using a monadic approach. The first step we have to take though is to make one parser for all
the main elements of our feature. This approach looks like this:

  title <- consumeLine
  statements <- many (parseStatement <* char '\n')
  examples <- (exampleTableParser <|> return (ExampleTable [] []))
  return $ Scenario title statements examples

backgroundParser :: Parser Scenario
backgroundParser = do
  string "Background:"
  consumeLine
  statements <- many (parseStatement <* char '\n')
  examples <- (exampleTableParser <|> return (ExampleTable [] []))
  return $ Scenario "Background" statements examples

featureParser :: Parser Feature
featureParser = do
  string "Feature: "
  title <- consumeLine
  maybeBackground <- optional backgroundParser
  scenarios <- many scenarioParser
  return $ Feature title maybeBackground scenarios

FEATURE DESCRIPTION



Now we'll use a recursive function that reads one line of the description at a time and adds to a
growing list. The trick is that we'll use the choice combinator offered by Attoparsec.

We'll create two parsers. The first assumes there are no further lines of description. It attempts to
parse the background and scenario list. The second reads a line of description, adds it to our
growing list, and recurses:

So we'll first try to run this noDescriptionLineParser. It will try to read the background and then the
scenarios as we've always done. If it succeeds, we know we're done. The argument we passed is
the full description:

Now if this parser fails, we know that it means the next line is actually part of the description. So
we'll write a parser to consume a full line, and then recurse:

featureParser :: Parser Feature
featureParser = do
  string "Feature: "
  title <- consumeLine
  (description, maybeBackground, scenarios) <- parseRestOfFeature
  return $ Feature title description maybeBackground scenarios

parseRestOfFeature :: Parser ([String], Maybe Scenario, [Scenario])
parseRestOfFeature = ...

parseRestOfFeature :: Parser ([String], Maybe Scenario, [Scenario])
parseRestOfFeature = parseRestOfFeatureTail []
  where
    parseRestOfFeatureTail prevDesc = do
      (fullDesc, maybeBG, scenarios) <- choice [noDescriptionLine prevDesc, descriptionLine prevDesc]
      return (fullDesc, maybeBG, scenarios)

where
  noDescriptionLine prevDesc = do
    maybeBackground <- optional backgroundParser
    scenarios <- some scenarioParser
    return (prevDesc, maybeBackground, scenarios)

descriptionLine prevDesc = do
  nextLine <- consumeLine



And now we're done! We can parse descriptions!

That wraps up our exploration of Attoparsec. Now you can move on to the fourth and final part of
this series where we'll learn about Megaparsec. We'll find that it's syntactically very similar to
Attoparsec with a few small exceptions. We'll see how we can use some of the added power of
monadic parsing to enrich our syntax.

To learn more about cool Haskell libraries, be sure to check out our Production Checklist! It'll tell
you a little bit about libraries in all kinds of areas like databases and web APIs.

If you've never written Haskell at all, download our Beginner's Checklist! It'll give you all the
resources you need to get started on your Haskell journey!

  parseRestOfFeatureTail (prevDesc ++ [nextLine])

CONCLUSION



In part 3 of this series, we explored the Attoparsec library. It provided us with a clearer syntax to
work with compared to applicative parsing, which we learned in part 2. This week, we'll explore one
final library: Megaparsec.

This library has a lot in common with Attoparsec. In fact, the two have a lot of compatibility by
design. Ultimately, we'll find that we don't need to change our syntax a whole lot. But Megaparsec
does have a few extra features that can make our lives simpler.

To follow the code examples here, head to the Github repository and take a look at the MegaParser
module on Github! To learn about more awesome libraries you can use in production, make sure to
download our Production Checklist! But never fear if you're new to Haskell! Just take a look at our
Beginners checklist and you'll know where to get started!

To start out, the basic parsing type for Megaparsec is a little more complicated. It has two type
parameters, e and s, and also comes with a built-in monad transformer ParsecT.

The e type allows us to provide some custom error data to our parser. The s type refers to the input
type of our parser, typically some variant of String. This parameter also exists under the hood in
Attoparsec. But we sidestepped that issue by using the Text module. For now, we'll set up our own
type alias that will sweep these parameters under the rug:

Megaparsec

A DIFFERENT PARSER TYPE

data ParsecT e s m a = ParsecT ...

type Parsec e s = ParsecT e s Identity

type MParser = Parsec Void Text



Let's start filling in our parsers. There's one structural difference between Attoparsec and
Megaparsec. When a parser fails in Attoparsec, its default behavior is to backtrack. This means it
acts as though it consumed no input. This is not the case in Megaparsec! A naive attempt to repeat
our nullParser code could fail in some ways:

Suppose we get the input "NULL" for this parser. Our program will attempt to select the first parser,
which will parse the N token. Then it will fail on U. It will move on to the second parser, but it will
have already consumed the N! Thus the second and third parser will both fail as well!

We get around this issue by using the try combinator. Using try gives us the Attoparsec behavior of
backtracking if our parser fails. The following will work without issue:

Even better, Megaparsec also has a convenience function string' for case insensitive parsing. So
our null and boolean parsers become even simpler:

TRYING OUR HARDEST

nullParser :: MParser Value
nullParser = nullWordParser >> return ValueNull
  where
    nullWordParser = string "Null" <|> string "NULL" <|> string "null"

nullParser :: MParser Value
nullParser = nullWordParser >> return ValueNull
  where
    nullWordParser = 
      try (string "Null") <|>
      try (string "NULL") <|>
      try (string "null")

nullParser :: MParser Value
nullParser = M.string' "null" >> return ValueNull

boolParser :: MParser Value
boolParser = 
  (trueParser >> return (ValueBool True)) <|> 



Unlike Attoparsec, we don't have a convenient parser for scientific numbers. We'll have to go back
to our logic from applicative parsing, only this time with monadic syntax.

Notice that each of our first two parsers use try to allow proper backtracking. For parsing strings,
we'll use the satisfy combinator to read everything up until a bar or newline:

And then filling in our value parser is easy as it was before:

  (falseParser >> return (ValueBool False))
    where
      trueParser = M.string' "true"
      falseParser = M.string' "false"

numberParser :: MParser Value
numberParser = (ValueNumber . read) <$>
  (negativeParser <|> decimalParser <|> integerParser)
  where
    integerParser :: MParser String
    integerParser = M.try (some M.digitChar)

    decimalParser :: MParser String
    decimalParser = M.try $ do
      front <- many M.digitChar
      M.char '.'
      back <- some M.digitChar
      return $ front ++ ('.' : back)

    negativeParser :: MParser String
    negativeParser = M.try $ do
      M.char '-'
      num <- decimalParser <|> integerParser
      return $ '-' : num

stringParser :: MParser Value
stringParser = (ValueString . trim) <$>
  many (M.satisfy (not . barOrNewline))

valueParser :: MParser Value
valueParser =



Aside from some trivial alterations, nothing changes about how we parse example tables. The
Statement parser requires adding in another try call when we're grabbing our pairs:

Otherwise, we'll fail on any case where we don't use any keywords in the statement! But it's
otherwise the same. Of course, we also need to change how we call our parser in the first place.
We'll use the runParser function instead of Attoparsec's parseOnly. This takes an extra argument
for the source file of our parser to provide better messages.

But nothing else changes in the structure of our parsers. It's very easy to take Attoparsec code and
Megaparsec code and re-use it with the other library!

  nullParser <|>
  boolParser <|>
  numberParser <|>
  stringParser

FILLING IN THE DETAILS

parseStatementLine :: Text -> MParser Statement
parseStatementLine signal = do
  M.string signal
  M.char ' '
  pairs <- many $ M.try ((,) <$> nonBrackets <*> insideBrackets)
  finalString <- nonBrackets
  let (fullString, keys) = buildStatement pairs finalString
  return $ Statement fullString keys
  where
    buildStatement  = ...

parseFeatureFromFile :: FilePath -> IO Feature
parseFeatureFromFile inputFile = do
  ...
  case runParser featureParser finalString inputFile of
    Left s -> error (show s)
    Right feature -> return feature



One bonus we do get from Megaparsec is that its monad transformer makes it easier for us to use
other monadic functionality. Our parser for statement lines has always been a little bit clunky. Let's
clean it up a little bit by allowing ourselves to store a list of strings as a state object. Here's how
we'll change our parser type:

Now whenever we parse a key using our brackets parser, we can append that key to our existing
list using modify. We'll also return the brackets along with the string instead of merely the
keyword:

Now instead of forming tuples, we can concatenate the strings we parse!

And now how do we get our final list of keys? Simple! We get our state value, reset it, and return
everything. No need for our messy buildStatement function!

ADDING SOME STATE

type MParser = ParsecT Void Text (State [String])

insideBrackets :: MParser String
insideBrackets = do
  M.char '<'
  key <- many M.letterChar
  M.char '>'
  modify (++ [key]) -- Store the key in the state!
  return $ ('<' : key) ++ ['>']

parseStatementLine :: Text -> MParser Statement
parseStatementLine signal = do
  M.string signal
  M.char ' '
  pairs <- many $ M.try ((++) <$> nonBrackets <*> insideBrackets)
  finalString <- nonBrackets
  let fullString = concat pairs ++ finalString
  ...

parseStatementLine :: Text -> MParser Statement
parseStatementLine signal = do



When we run this parser at the start, we now have to use runParserT instead of runParser. This
returns us an action in the State monad, meaning we have to use evalState to get our final result:

As a last bonus, let's look at error messages in Megaparsec. When we have errors in Attoparsec,
the parseOnly function gives us an error string. But it's not that helpful. All it tells us is what
individual parser on the inside of our system failed:

These messages don't tell us where within the input it failed, or what we expected instead. Let's
compare this to Megaparsec and runParser:

  M.string signal
  M.char ' '
  pairs <- many $ M.try ((++) <$> nonBrackets <*> insideBrackets)
  finalString <- nonBrackets
  let fullString = concat pairs ++ finalString
  keys <- get
  put []
  return $ Statement fullString keys

parseFeatureFromFile :: FilePath -> IO Feature
parseFeatureFromFile inputFile = do
  ...
  case evalState (stateAction finalString) [] of
    Left s -> error (show s)
    Right feature -> return feature
  where
    stateAction s = runParserT featureParser inputFile s

BONUSES OF MEGAPARSEC

>> parseOnly nullParser "true"
Left "string"
>> parseOnly "numberParser" "hello"
Left "Failed reading: takeWhile1"

>> runParser nullParser "true" ""
Left (TrivialError 



This gives us a lot more information! We can see the string we're trying to parse. We can also see
the exact position it fails at. It'll even give us a picture of what parsers it was trying to use. In a
larger system, this makes a big difference. We can track down where we've gone wrong either in
developing our syntax, or conforming our input to meet the syntax. If we customize the e
parameter type, we can even add our own details into the error message to help even more!

This wraps up our exploration of parsing libraries in Haskell! In the past few weeks, we've learned
about Applicative parsing, Attoparsec, and Megaparsec. The first provides useful and intuitive
combinators for when our language is regular. It allows us to avoid using a monad for parsing and
the baggage that might bring. With Attoparsec, we saw an introduction to monadic style parsing.
This provided us with a syntax that was easier to understand and where we could see what was
happening. Finally in this part, we explored Megaparsec. This library has a lot in common
syntactically with Attoparsec. But it provides a few more bells and whistles that can make many
tasks easier.

Ready to explore some more areas of Haskell development? Want to get some ideas for new
libraries to learn? Download our Production Checklist! It'll give you a quick summary of some tools
in areas ranging from data structures to web APIs!

Never programmed in Haskell before? Want to get started? Check out our Beginners Checklist! It
has all the tools you need to start your Haskell journey!

  (SourcePos {sourceName = "true", sourceLine = Pos 1, sourceColumn = Pos 1} :| []) 
  (Just EndOfInput) 
  (fromList [Tokens ('n' :| "ull")]))
>> runParser numberParser "hello" ""
Left (TrivialError 
  (SourcePos {sourceName = "hello", sourceLine = Pos 1, sourceColumn = Pos 1} :| []) 
    (Just EndOfInput) 
    (fromList [Tokens ('-' :| ""),Tokens ('.' :| ""),Label ('d' :| "igit")]))

CONCLUSION


