
Если вы видите что-то необычное, просто сообщите мне.

Haskell claims to have functional purity, and hence lacks side effects. This is of course a bit of a
simplication that lends itself to many jokes. Of course we can do lots of interesting communication
tasks with Haskell, as long as we know the right libraries! In this series, we explore a variety of
ways we can interact with our users over the internet!

Twilio and Text Messages
Sending Emails with Mailgun
Mailchimp and Building Our Own Integration

Haskell API
Integrations

Welcome to part 1 of our series on Haskell API integrations! Writing our own Haskell code using
only simple libraries is fun. But we can't do everything from scratch. There are all kinds of cools
services out there to use so we don't have to. We can interface with a lot of these by using APIs.
Often, the most well supported APIs use languages like Python and Javascript. But adventurous
Haskell developers have also developed bindings for these systems! So in this series, we'll explore
a couple of these. We'll also see how to develop our own integration in case one isn't available for
the service we want.

In this first part, we'll focus on the Twilio API. We'll see how we can send SMS messages from our
Haskell code using the twilio library. We'll also write a simple server to use Twilio's callback system
to receive text messages and process them programmatically. You can follow along with the code
here on the Github repository for this series. You can find the code for this part in two modules: the
SMS module, which has re-usable SMS functions, and the SMSServer module, which has the
Servant related code. If you're already familiar with the Haskell Twilio library, you can move onto
part 2 where we discuss sending emails with Mailgun!

Of course, none of this is useful if you've never written any Haskell before! If you want to get
started with the language basics, download our Beginners Checklist. To learn more about advanced
techniques and libraries, grab our Production Checklist!

Naturally, you'll need a Twilio account to use the Twilio API. Once you have this set up, you need to
add your first Twilio number. This will be the number you'll send text messages to. You'll also see it
as the sender for other messages in your system. You should also go through the process of
verifying your own phone number. This will allow you to send and receive messages on that phone
without "publishing" your app.

You also need a couple other pieces of information from your account. There's the account SID, and
the authentication token. You can find these on the dashboard for your project on the Twilio page.

Twilio and Text Messages

SETTING UP OUR ACCOUNT

You'll need these values in your code. But since you don't want to put them into version control,
you should save them as environment variables on your machine. Then when you need to, you can
fetch them like so:

In addition, you should get a Twilio number for your account to send messages from (this might
cost a dollar or so). For testing purposes, you should also verify your own phone number on the
account dashboard so you can receive messages. Save these as environment variables as well.

The first thing we'll want to do is use the API to actually send a text message. We perform Twilio
actions within the Twilio monad. It's rather straightforward to access this monad from IO. All we
need is the runTwilio' function:

The first two parameters to this function are IO actions to fetch the account SID and auth token like
we have above. Then the final parameter of course is our Twilio action.

fetchSid :: IO String
fetchSid = getEnv "TWILIO_ACCOUT_SID"

fetchToken :: IO String
fetchToken = getEnv "TWILIO_AUTH_TOKEN"

import Data.Text (pack)

fetchTwilioNumber :: IO Text
fetchTwilioNumber = pack <$> getEnv "TWILIO_PHONE_NUMBER"

fetchUserNumber :: IO Text
fetchUserNumber = pack <$> getEnv "TWILIO_USER_NUMBER"

SENDING A MESSAGE

runTwilio' :: IO String -> IO String -> Twilio a -> IO a

sendBasicMessage :: IO ()
sendBasicMessage = runTwilio' fetchSid fetchToken $ do
 ...

To compose a message, we'll use the PostMessage constructor. This takes four parameters. First,
the "to" number of our message. Fill this in with the number to your physical phone. Then the
second parameter is the "from" number, which has to be our Twilio account's phone number. Then
the third parameter is the message itself. The fourth parameter is optional, we can leave it as
Maybe. To send the message, all we have to do is use the post function! That's all there is to it!

And just like that, you've sent your first Twilio message! You can just run this IO function from
GHCI, and it will send you a text message as long as everything is set up with your Twilio account!
Note that it does cost a small amount of money to send messages over Twilio. But a trial account
should give you enough free credit to experiment a little bit (as well as cover the initial number).

Now, it's a little more complicated to deal with incoming messages. First, you need a web server
running on the internet. For basic projects like this, I tend to rely on Heroku. If you fork our Github
repo, you can easily turn it into your own Heroku server! Just take a look at these instructions in
our repo!

The first thing we need to do is create a webhook on our Twilio account. To do this, go to "Manage
Numbers" from your project dashboard page (Try this link if you can't find it). Then select your
Twilio number. You'll now want to scroll to the section called "Messaging" and then within that, find
"A Message Comes In". You want to select "Webhook" in the dropdown. Then you'll need to specify
a URL where your server is located, and select "HTTP Post". You can see in this screenshot that
we're using my Heroku server with the endpoint path /api/sms.

sendBasicMessage :: IO ()
sendBasicMessage = do
 toNumber <- fetchUserNumber
 fromNumber <- fetchTwilioNumber
 runTwilio' fetchSid fetchToken $ do
 let msg = PostMessage toNumber fromNumber "Hello Twilio!"
 _ <- post msg
 return ()

RECEIVING MESSAGES

With this webhook set up, Twilio will send a post request to the endpoint every time a user texts
our number. The request will contain the message and the number of the sender. So let's set up a
server using Servant to pick up that request.

We'll start by specifying a simple type to encode the message we'll receive from Twilio:

Twilio encodes its post request body as FormURLEncoded. In order for Servant to deserialize this,
we'll need to define an instance of the FromForm class for our type. This function takes in a hash
map from keys to lists of values. It will return either an error string or our desired value.

So form is a hash map, and we want to look up the "From" number of the message as well as its
body. Then as long as we find at least one result for each of these, we'll return the message.
Otherwise, we return an error.

Now that we have this instance, we can finally define our API endpoint! All it needs are the simple
path components and the request body. For now, we won't actually post any response.

data IncomingMessage = IncomingMessage
 { fromNumber :: Text
 , body :: Text
 }

instance FromForm IncomingMessage where
 fromForm :: Form -> Either Text IncomingMessage
 fromForm (From form) = ...

instance FromForm IncomingMessage where
 fromForm :: Form -> Either Text IncomingMessage
 fromForm (From form) = case lookupResults of
 Just ((fromNumber : _), (body : _)) ->
 Right $ IncomingMessage fromNumber body
 Just _ -> Left "Found the keys but no values"
 Nothing -> Left "Didn't find keys"
 where
 lookupResults = do
 fromNumber <- HashMap.lookup "From" form
 body <- HashMap.lookup "Body" form
 return (fromNumber, body)

WRITING OUR HANDLER Now let's we want to write a handler for our endpoint that will echo the
user's message back to them.

We'll also add an extra endpoint to "ping" our server, just so it's easier to verify that the server is
working at a basic level. It will return the string "Pong" to signify the request has been received.

And now we wrap up with some of the Servant mechanics to run our server.

And now if we send a text message to our Twilio number, we'll see that same message back as a
reply!

type SMSServerAPI =
 "api" :> "sms" :> ReqBody '[FormUrlEncoded] IncomingMessage :> Post '[JSON] ()

incomingHandler :: IncomingMessage -> Handler ()
incomingHandler (IncomingMessage from body) = liftIO $ do
 twilioNum <- fetchTwilioNumber
 runTwilio' fetchSid fetchToken $ do
 let newMessage = PostMessage from twilioNum body Nothing
 _ <- post newMessage
 return ()

type SMSServerAPI =
 "api" :> "sms" :> ReqBody '[FormUrlEncoded] IncomingMessage :> Post '[JSON] () :<|>
 "api" :> "ping" :> Get '[JSON] String

pingHandler :: Handler String
pingHandler = return "Pong"

smsServerAPI :: Proxy SMSServerAPI
smsServerAPI = Proxy :: Proxy SMSServerAPI

smsServer :: Server SMSServerAPI
smsServer = incomingHandler :<|> pingHandler

runServer :: IO ()
runServer = do
 port <- read <$> getEnv "PORT"
 run port (serve smsServerAPI smsServer)

In this part, we saw how we could use just a few simple lines of Haskell to send and receive text
messages. There was a fair amount of effort required in using the Twilio tools themselves, but most
of that is easy once you know where to look! You can now move onto part 2, where we'll explore
how we can send emails with the Mailgun API. We'll see how we can combine text and email for
some pretty cool functionality.

An important thing making these apps easy is knowing the right tools to use! One of the tools we
used in this part was the Servant web API library. To learn more about this, be sure to check out
our Real World Haskell Series. For more ideas of web libraries to use, download our Production
Checklist.

And if you've never written Haskell before, hopefully I've convinced you that it IS possible to do
some cool things with the language! Download our Beginners Checklist to get stated!

CONCLUSION

In part 1 of this series, we started our exploration of the world of APIs by integrating Haskell with
Twilio. We were able to send a basic SMS message, and then create a server that could respond to
a user's message. In this part, we're going to venture into another type of effect: sending emails.
We'll be using Mailgun for this task, along with the Hailgun Haskell API for it.

You can take a look at the full code for this article by looking on our Github repository. For this part,
you'll want to look at the Email module and the Full Server. If this article sparks your curiosity for
more Haskell libraries, you should download our Production Checklist! If you've already read this
part, feel free to move onto part 3 where we look at managing an email list with Mailchimp!

To start with, we'll need a mailgun account obviously. Signing up is free and straightforward. It will
ask you for an email domain, but you don't need one to get started. As long as you're in testing
mode, you can use a sandbox domain they provide to host your mail server.

With Twilio, we had to specify a "verified" phone number that we could message in testing mode.
Similarly, you will also need to designate a verified email address. Your sandboxed domain will only
be able to send to this address. You'll also need to save a couple pieces of information about your
Mailgun account. In particular, you need your API Key, the sandboxed email domain, and the reply
address for your emails to use. You'll also want the verified email you can send to. Save these as
environment variables on your local system and remote machine.

Now let's get a feel for the Hailgun code by sending a basic email. All this occurs in the simple IO
monad. We ultimately want to use the function sendEmail, which requires both a HailgunContext
and a HailgunMessage:

Sending Emails with Mailgun

MAKING AN ACCOUNT

BASIC EMAIL

We'll start by retrieving our environment variables. With our domain and API key, we can build the
HailgunContext we'll need to pass as an argument.

Now to build the message itself, we'll use a builder function hailgunMessage. It takes several
different parameters:

These are all very easy to fill in. The MessageSubject is Text and then we'll pass our reply address
and verified address from above. For the content, we'll start by using the TextOnly constructor for a
plain text email. We'll see an example later of how we can use HTML in the content:

sendEmail
 :: HailgunContext
 -> HailgunMessage
 -> IO (Either HailgunErrorResponse HailgunSendResponse)

import Data.ByteString.Char8 (pack)

sendBasicMail :: IO ()
sendBasicMail = do
 domain <- getEnv "MAILGUN_DOMAIN"
 apiKey <- getEnv "MAILGUN_API_KEY"
 replyAddress <- pack <$> getEnv "MAILGUN_REPLY_ADDRESS"
 toAddress <- pack <$> getEnv "MAILGUN_USER_ADDRESS"
 -- Last argument is an optional proxy
 let context = HailgunContext domain apiKey Nothing
 ...

hailgunMessage
 :: MessageSubject
 -> MessageContent
 -> UnverifiedEmailAddress -- Reply Address, just a ByteString
 -> MessageRecipients
 -> [Attachment]
 -> Either HailgunErrorMessage HailgunMessage

sendMail :: IO ()
sendMail = do
 ...
 replyAddress <- pack <$> getEnv "MAILGUN_REPLY_ADDRESS"

The MessageRecipients type has three fields. First are the direct recipients, then the CC'd emails,
and then the BCC'd users. We're only sending to a single user at the moment. So we can take the
emptyMessageRecipients item and modify it. We'll wrap up our construction by providing an empty
list of attachments for now:

If there are issues, the hailgunMessage function can throw an error, as can the sendEmail function
itself. But as long as we check these errors, we're in good shape to send out the email!

 let msg = mkMessage replyAddress
 ...
 where
 mkMessage toAddress replyAddress = hailgunMessage
 "Hello Mailgun!"
 (TextOnly "This is a test message.")
 replyAddress
 ...

where
 mkMessage toAddress replyAddress = hailgunMessage
 "Hello Mailgun!"
 (TextOnly "This is a test message.")
 replyAddress
 (emptyMessageRecipients { recipientsTo = toAddress })
 []

sendBasicEmail :: IO ()
sendBasicEmail = do
 domain <- getEnv "MAILGUN_DOMAIN"
 apiKey <- getEnv "MAILGUN_API_KEY"
 replyAddress <- pack <$> getEnv "MAILGUN_REPLY_ADDRESS"
 toAddress <- pack <$> getEnv "MAILGUN_USER_ADDRESS"
 let context = HailgunContext domain apiKey Nothing
 case mkMessage toAddress replyAddress of
 Left err -> putStrLn ("Making failed: " ++ show err)
 Right msg -> do
 result <- sendEmail context msg -- << Send Email Here!
 case result of
 Left err -> putStrLn ("Sending failed: " ++ show err)
 Right resp -> putStrLn ("Sending succeeded: " ++ show resp)

Notice how it's very easy to build all our functions up when we start with the type definitions. We
can work through each type and figure out what it needs. I reflect on this idea some more in this
article on Compile Driven Learning, which is part of our Haskell Brain Series for newcomers to
Haskell!

Now that we know how to send emails, let's incorporate it into our server! We'll start by writing
another data type that will represent the potential commands a user might text to us. For now, it
will only have the "subscribe" command.

Now let's write a function that will take their message and interpret it as a command. If they text
subscribe {email}, we'll send them an email!

Now we'll extend our server handler to reply. If we interpret their command correctly, we'll send a
replay email with a new function sendSubscribeEmail. Otherwise, we'll send them back a text
saying we couldn't understand them.

 where
 mkMessage toAddress replyAddress = hailgunMessage

EXTENDING OUR SERVER

data SMSCommand = SubscribeCommand Text

messageToCommand :: Text -> Maybe SMSCommand
messageToCommand messageBody = case splitOn " " messageBody of
 ["subscribe", email] -> Just $ SubscribeCommand email
 _ -> Nothing

incomingHandler :: IncomingMessage -> Handler ()
incomingHandler (IncomingMessage from body) = liftIO $ do
 case messageToCommand body of
 Nothing -> do
 twilioNum <- fetchTwilioNumber
 runTwilio' fetchSid fetchToken $ do
 let body = "Sorry, we didn't understand that request!"
 let newMessage = PostMessage from twilioNum body Nothing

Now all we have to do is construct this new email. Let's add a couple new features beyond the
basic email we made before.

Let's start by adding an attachment. We can build an attachment by providing a path to a file as
well as a string describing it. To get this file, our message making function will need the current
running directory.

As long as the reward file lives on our server, that's all we need to do to send that file to the user.
Now to show off one more feature, let's change the content of our email so that it contains some
HTML instead of only text. In particular, we'll give them the chance to confirm their subscription by

 _ <- post newMessage
 return ()
 Just (SubscribeCommand email) -> sendSubscribeEmail email

sendSubscribeEmail :: Text -> IO ()
sendSubscribeEmail = ...

MORE ADVANCED EMAILS

mkSubscribeMessage :: ByteString -> ByteString -> FilePath -> Either HailgunErrorMessage HailgunMessage
mkSubscribeMessage replyAddress subscriberAddress currentDir =
 hailgunMessage
 "Thanks for signing up!"
 content
 replyAddress
 (emptyMessageRecipients { recipientsTo = [subscriberAddress] })
 -- Notice the attachment!
 [Attachment
 (rewardFilepath currentDir)
 (AttachmentBS "Your Reward")
]
 where
 content = TextOnly "Here's your reward!"

rewardFilepath :: FilePath -> FilePath
rewardFilepath currentDir = currentDir ++ "/attachments/reward.txt"

clicking a link to our server. All that changes here is that we'll use the TextAndHTML constructor
instead of TextOnly. We do want to provide a plain text interpretation of our email in case HTML
can't be rendered for whatever reason. Notice the use of the <a> tags for the link:

If you're running our code on your own Heroku server, you'll need to change the app name (mmh-
apis) in the URLs above.

Then to round this code out, all we'll need to do is fill out sendSubscribeEmail to use our function
above. It will reference the same environment variables we have in our other function:

content = TextAndHTML
 textOnly
 ("Here's your reward! To confirm your subscription, click " <>
 link <> "!")
 where
 textOnly = "Here's your reward! To confirm your subscription, go to "
 <> "https://mmh-apis.herokuapp.com/api/subscribe/"
 <> subscriberAddress
 <> " and we'll sign you up!"
 link = "<a href=\"https://mmh-apis.herokuapp.com/api/subscribe/"
 <> subscriberAddress <> "\">this link"

sendSubscribeEmail :: Text -> IO ()
sendSubscribeEmail email = do
 domain <- getEnv "MAILGUN_DOMAIN"
 apiKey <- getEnv "MAILGUN_API_KEY"
 replyAddress <- pack <$> getEnv "MAILGUN_REPLY_ADDRESS"
 let context = HailgunContext domain apiKey Nothing
 currentDir <- getCurrentDirectory
 case mkSubscribeMessage replyAddress (encodeUtf8 email) currentDir of
 Left err -> putStrLn ("Making failed: " ++ show err)
 Right msg -> do
 result <- sendEmail context msg
 case result of
 Left err -> putStrLn ("Sending failed: " ++ show err)
 Right resp -> putStrLn ("Sending succeeded: " ++ show resp)

Our course, we'll want to add a new endpoint to our server to handle the subscribe link we added
above. But we'll handle that in the last part of the series. Hopefully from this part, you've learned
that sending emails with Haskell isn't too scary. The Hailgun API is quite intuitive and when you
break things down piece by piece and look at the types involved.

There's a lot of advanced material in this series, so if you think you need to backtrack, don't worry,
we've got you covered! Our Real World Haskell Series will teach you how to use libraries like
Persistent for database management and Servant for making an API. For some more libraries you
can use to write enhanced Haskell, download our Production Checklist!

If you've never programmed in Haskell at all, you should try it out! Download our Haskell
Beginner's Checklist or read our Liftoff Series!

CONCLUSION

Welcome to the third and final part in our series on Haskell API integrations! We started this series
off by learning how to send and receive text messages using Twilio. Then we learned how to send
emails using the Mailgun service. Both of these involved applying existing Haskell libraries suited to
the tasks. This week, we'll learn how to connect with Mailchimp, a service for managing email
subscribers. Only this time, we're going to do it a bit differently.

There are a couple different Haskell libraries out there for Mailchimp. But we're not going to use
them! Instead, we'll learn how we can use Servant to connect directly to the API. This should give
us some understanding for how to write one of these libraries. It should also make us more
confident of integrating with any API of our choosing!

To follow along the code for this article, you can read the code on our Github Repository! For this
part, you'll want to focus on the Subscribers module and the Full Server.

The topics in this article are quite advanced. If any of it seems crazy confusing, there are plenty of
easier resources for you to start off with!

1. If you've never written Haskell at all, see our Beginners Checklist to learn how to get
started!

2. If you want to learn more about the Servant library we'll use, check out my talk from
BayHac 2017 and download the slides and companion code.

3. Our Production Checklist has some further resources and libraries you can look at for
common tasks like writing web APIs!

Mailchimp and Building Our
Own Integration

MAILCHIMP 101

Now let's get going! To integrate with Mailchimp, you first need to make an account and create a
mailing list! This is pretty straightforward, and you'll want to save 3 pieces of information as
environment variables. First is base URL for the Mailchimp API. It will look like:

Where {server} should be replaced by the region that appears in the URL when you log into your
account. For instance, mine is: https://us14.api.mailchimp.com/3.0. You'll also need your API Key,
which appears in the "Extras" section under your account profile (you might need to create one).
Then you'll also want to save the name of the mailing list you made.

We'll be trying to perform three tasks using the API. First, we want to derive the internal "List ID" of
our particular Mailchimp list. We can do this by analyzing the results of calling the endpoint at:

It will give us all the information we need about our different mailing lists.

Once we have the list ID, we can use that to perform actions on that list. We can for instance
retrieve all the information about the list's subscribers by using:

We'll add an extra count param to this, as otherwise we'll only see the results for 10 users:

Finally, we'll use this same basic resource to subscribe a user to our list. This involves a POST
request and a request body containing the user's email address. Note that all requests and
responses will be in the JSON format:

https://{server}.api.mailchimp.com/3.0

OUR 3 TASKS

GET {base-url}/lists

GET {base-url}/lists/{list-id}/members

GET {base-url}/lists/{list-id}/members?count=2000

POST {base-url}/lists/{list-id}/members

{

On top of these endpoints, we'll also need to add basic authentication to every API call. This is
where our API key comes in. Basic auth requires us to provides a "username" and "password" with
every API request. Mailchimp doesn't care what we provide as the username. As long as we provide
the API key as the password, we'll be good. Servant will make it easy for us to do this.

Once we know the structure of the API, our next goal is to define wrapper types. These will allow us
to serialize our data into the format demanded by the Mailchimp API. We'll have four different
newtypes. The first will represent a single email list in a response object. All we care about is the
list name and its ID, which we represent with Text:

Now we want to be able to deserialize a response containing many different lists:

In a similar way, we want to represent a single subscriber and a response containing several
subscribers:

 "email_address": "person@email.com",
 "status": "subscribed"
}

TYPES AND INSTANCES

newtype MailchimpSingleList = MailchimpSingleList (Text, Text)
 deriving (Show)

newtype MailchimpListResponse =
 MailchimpListResponse [MailchimpSingleList]
deriving (Show)

newtype MailchimpSubscriber = MailchimpSubscriber
 { unMailchimpSubscriber :: Text }
deriving (Show)

newtype MailchimpMembersResponse =
 MailchimpMembersResponse [MailchimpSubscriber]
deriving (Show)

The purpose of using these newtypes is so we can define JSON instances for them. In general, we
only need FromJSON instances so we can deserialize the response we get back from the API. Here's
what our different instances look like:

And then, we need a ToJSON instance for our individual subscriber type. This is because we'll be
sending that as a POST request body:

Finally, we also need one extra type for the subscription response. We don't actually care what the
information is, but if we simply return (), we'll get a serialization error because it returns a JSON
object, rather than "null".

instance FromJSON MailchimpSingleList where
 parseJSON = withObject "MailchimpSingleList" $ \o -> do
 name <- o .: "name"
 id_ <- o .: "id"
 return $ MailchimpSingleList (name, id_)

instance FromJSON MailchimpListResponse where
 parseJSON = withObject "MailchimpListResponse" $ \o -> do
 lists <- o .: "lists"
 MailchimpListResponse <$> forM lists parseJSON

instance FromJSON MailchimpSubscriber where
 parseJSON = withObject "MailchimpSubscriber" $ \o -> do
 email <- o .: "email_address"
 return $ MailchimpSubscriber email

instance FromJSON MailchimpListResponse where
 parseJSON = withObject "MailchimpListResponse" $ \o -> do
 lists <- o .: "lists"
 MailchimpListResponse <$> forM lists parseJSON

instance ToJSON MailchimpSubscriber where
 toJSON (MailchimpSubscriber email) = object
 ["email_address" .= email
 , "status" .= ("subscribed" :: Text)
]

Now that we've defined our types, we can go ahead and define our actual API using Servant. This
might seem a little confusing. After all, we're not building a Mailchimp Server! But by writing this
API, we can use the client function from the servant-client library. This will derive all the client
functions we need to call into the Mailchimp API. Let's start by defining a combinator that will
description our authentication format using BasicAuth. Since we aren't writing any server code, we
don't need a "return" type for our authentication.

Now let's write the lists endpoint. It has the authentication, our string path, and then returns us our
list response.

For our next endpoint, we need to capture the list ID as a parameter. Then we'll add the extra
query parameter related to "count". It will return us the members in our list.

Finally, we need the "subscribe" endpoint. This will look like our last endpoint, except without the
count parameter and as a post request. Then we'll include a single subscriber in the request body.

data SubscribeResponse = SubscribeResponse

instance FromJSON SubscribeResponse where
 parseJSON _ = return SubscribeResponse

DEFINING A SERVER TYPE

type MCAuth = BasicAuth "mailchimp" ()

type MailchimpAPI =
 MCAuth :> "lists" :> Get '[JSON] MailchimpListResponse :<|>
 ...

type Mailchimp API =
 ...
 MCAuth :> "lists" :> Capture "list-id" Text :> "members" :>
 QueryParam "count" Int :> Get '[JSON] MailchimpMembersResponse

type Mailchimp API =
 ...

Now with servant-client, it's very easy to derive the client functions for these endpoints. We define
the type signatures and use client. Note how the type signatures line up with the parameters that
we expect based on the endpoint definitions. Each endpoint takes the BasicAuthData type. This
contains a username and password for authenticating the request.

Now let's write some helper functions so we can call these functions from the IO monad. Here's a
generic function that will take one of our endpoints and call it using Servant's runClientM
mechanism.

 MCAuth :> "lists" :> Capture "list-id" Text :> "members" :>
 ReqBody '[JSON] MailchimpSubscriber :> Post '[JSON] SubscribeResponse

mailchimpApi :: Proxy MailchimpApi
mailchimpApi = Proxy :: Proxy MailchimpApi

fetchListsClient :: BasicAuthData -> ClientM MailchimpListResponse
fetchSubscribersClient :: BasicAuthData -> Text -> Maybe Int -> ClientM MailchimpMembersResponse
subscribeNewUserClient :: BasicAuthData -> Text -> MailchimpSubscriber -> ClientM ()
(fetchListsClient :<|>
 fetchSubscribersClient :<|>
 subscribeNewUserClient) = client mailchimpApi

RUNNING OUR CLIENT
FUNCTIONS

runMailchimp :: (BasicAuthData -> ClientM a) -> IO (Either ServantError a)
runMailchimp action = do
 baseUrl <- getEnv "MAILCHIMP_BASE_URL"
 apiKey <- getEnv "MAILCHIMP_API_KEY"
 trueUrl <- parseBaseUrl baseUrl
 -- "username" doesn't matter, we only care about API key as "password"
 let userData = BasicAuthData "username" (pack apiKey)
 manager <- newTlsManager
 let clientEnv = ClientEnv manager trueUrl
 runClientM (action userData) clientEnv

First we derive our environment variables and get a network connection manager. Then we run the
client action against the ClientEnv. Not too difficult.

Now we'll write a function that will take a list name, query the API for all our lists, and give us the
list ID for that name. It will return an Either value since the client call might actually fail. It calls our
list client and filters through the results until it finds a list whose name matches. We'll return an
error value if the list isn't found.

Our function for retrieving the subscribers for a particular list is more straightforward. We make the
client call and either return the error or else unwrap the subscriber emails and return them.

And our subscribe function looks very similar. We wrap the email up in the MailchimpSubscriber
type and then we make the client call using runMailchimp.

fetchMCListId :: Text -> IO (Either String Text)
fetchMCListId listName = do
 listsResponse <- runMailchimp fetchListsClient
 case listsResponse of
 Left err -> return $ Left (show err)
 Right (MailchimpListResponse lists) ->
 case find nameMatches lists of
 Nothing -> return $ Left "Couldn't find list with that name!"
 Just (MailchimpSingleList (_, id_)) -> return $ Right id_
 where
 nameMatches :: MailchimpSingleList -> Bool
 nameMatches (MailchimpSingleList (name, _)) = name == listName

fetchMCListMembers :: Text -> IO (Either String [Text])
fetchMCListMembers listId = do
 membersResponse <- runMailchimp
 (\auth -> fetchSubscribersClient auth listId (Just 2000))
 case membersResponse of
 Left err -> return $ Left (show err)
 Right (MailchimpMembersResponse subs) -> return $
 Right (map unMailchimpSubscriber subs)

subscribeMCMember :: Text -> Text -> IO (Either String ())
subscribeMCMember listId email = do

The last step of this process is to incorporate the subscription into our server, on the "subscribe"
handler. First, since we wrote all our Mailchimp functions as IO (Either String ...), we'll write a quick
helper for running such actions in the Handler monad. This monad lets us throw "Error 500" if these
calls fail, echoing the error message:

Now using this helper and our Mailchimp functions above, we can write a fairly clean handler that
handles subscribing to the list:

And now the user will be subscribed on our mailing list after they click the link!

That wraps up our exploration of Mailchimp and our series on integrating APIs with Haskell! In part
1 of this series, we saw how to send and receive texts using the Twilio API. Then in part 2, we sent

 subscribeResponse <- runMailchimp (\auth ->
 subscribeNewUserClient auth listId (MailchimpSubscriber email))
 case subscribeResponse of
 Left err -> return $ Left (show err)
 Right _ -> return $ Right ()

MODIFYING THE SERVER

tryIO :: IO (Either String a) -> Handler a
tryIO action = do
 result <- liftIO action
 case result of
 Left e -> throwM $ err500 { errBody = BSL.fromStrict $ BSC.pack (show e)}
 Right x -> return x

subscribeEmailHandler :: Text -> Handler ()
subscribeEmailHandler email = do
 listName <- pack <$> liftIO (getEnv "MAILCHIMP_LIST_NAME")
 listId <- tryIO (fetchMailchimpListId listName)
 tryIO (subscribeMailchimpMember listId email)

CONCLUSION

emails to our users with Mailgun. Finally, we used the Mailchimp API to more reliably store our list
of subscribers. We even did this from scratch, without the use of a library like we had for the other
two effects. We used Servant to great effect here, specifying what our API would look like even
though we weren't writing a server for it! This enabled us to derive client functions that could call
the API for us.

This series combined tons of complex ideas from many other topics. If you were a little lost trying
to keep track of everything, I highly recommend you check out our Real World Haskell series. It'll
teach you a lot of cool techniques, such as how to connect Haskell to a database and set up a
server with Servant. You should also download our Production Checklist for some more ideas about
cool libraries!

And of course, if you're a total beginner at Haskell, hopefully you understand now that Haskell CAN
be used for some very advanced functionality. Furthermore, we can do so with incredibly elegant
solutions that separate our effects very nicely. If you're interested in learning more about the
language, download our free Beginners Checklist!

