
Если вы видите что-то необычное, просто сообщите мне.

In my previous post I focused on the build and development tools. This post will conclude my series
on Capital Match by focusing on the last stage of the rocket: How we build and manage our
development and production infrastructure. As already emphasized in the previous post, I am not a
systems engineer by trade, I simply needed to get up and running something while building our
startup. Comments and feedback most welcomed!

Continuous Integration is a cornerstone of Agile Development practices and something I couldn’t
live without. CI is a prerequisite for Continuous Deployment or Continuous Delivery: It should
ensure each and every change in code of our system is actually working and did not break
anything. CI is traditionally implemented using servers like Jenkins or online services like Travis
that trigger a build each time code is pushed to a source control repository. But people like David
Gageot, among others, have shown us that doing CI without a server was perfectly possible. The
key point is that it should not be possible to deploy something which has not been verified and
validated by CI.

We settled on using a central git repository and CI server, hosted on a dedicated build machine:

Git repository’s master branch is “morally” locked: Although technically it is still possible
to push to it, we never do that and instead push to a review branch which is merged to
the master only when build passes,
The git repository is configured with a git deploy
hook](https://www.digitalocean.com/community/tutorials/how-to-use-git-hooks-to-

Haskell-based Infrastructure

Continuous Integration

CI Server

automate-development-and-deployment-tasks) that triggers a call to the CI server when
we push on the review branch,
Our CI server is implemented with bake, a robust and simple CI engine built - guess what?
- in Haskell. Bake has a client/server architecture where the server is responsible for
orchestrating builds that are run by registered clients, which are supposed to represent
different build environments or configurations. Bake has a very simple web interface that
looks like

Bake provides the framework for executing “tests”, reporting their results and merging
changes to master branch upon successful build, but does not tell you how your software
is built: This is something we describe in Haskell as a set of steps (bake calls them all
tests) that are linked through dependencies and possibly dependent on the capabilities of
the client. Here is a fragment of the code for building Capital Match:

data Action = Cleanup
 | Compile
 | Dependencies
 | RunDocker
 | Deploy ImageId
 | IntegrationTest
 | UITest
 | EndToEndTest
 deriving (Show,Read)

allTests :: [Action]

https://notepad.gasick.ru/uploads/images/gallery/2023-07/image-1689755317323.png

The code is pretty straightforward and relies on the toplevel build script build.sh which is actually a
simple wrapper for running our Shake build with various targets.

The output of the CI process, when it succeeds, is made of a bunch of docker containers
deployed to Dockerhub, each tagged with the SHA1 of the commit that succeeded,
We extended bake to use git notes to identify successful builds: We attach a simple note
saying Build successful to those commits which actually pass all the tests. We also notify
outcome of the build in our main Slack channel,
Bake server and client are packaged and deployed as docker containers, which means we
can pull and use those containers from any docker-enabled machine in order to reproduce
a CI environment or trigger builds through bake’s command-line interface,
As the last stage of a successful build we deploy a test environment, using anonymized
and redacted sample of production data.

allTests = [Compile
 , Dependencies
 , IntegrationTest
 , UITest
 , EndToEndTest
 , Deploy appImage
 , RunDocker
]

execute :: Action -> TestInfo Action
execute Compile = depend [Dependencies] $ run $ do
 opt <- addPath ["."] []
 () <- cmd opt "./build.sh --report=buildreport.json"
 Exit _ <- cmd opt "cat buildreport.json"
 sleep 1
 incrementalDone

execute IntegrationTest = depend [Compile] $ run $ do
 opt <- addPath ["."] []
 () <- cmd opt "./build.sh test"
 incrementalDone

An significant time slice of our build is dedicated to running tests. Unit and server-side integration
tests are pretty straightforward as they consist in a single executable built from Haskell source
code which is run at IntegrationTest stage of the CI build process. Running UI-side tests is a little bit
more involved as it requires an environment with PhantomJS and full ClojureScript stack to run
leiningen. But the most interesting tests are the end-to-end ones which run Selenium tests against
the full system.

The complete ETE tests infrastructure is packaged as - guess what? - a set of containers
orchestrated with docker-compose and mimicking production setup:

One container per service,
One container for the nginx front-end,
One container for the SeleniumHub,
One container for a Firefox node in debug mode (this allows us to use VNC to log into
the container and see the Firefox instance executing the tests),
and one container for the test driver itself,

Tests are written in Haskell using hs-webdriver, and we try to write them in a high-level
yielding something like:

Testing

it "Investor can withdraw cash given enough balance on account" $ runWithImplicitWait $ do

 liftIO $ invokeApp appServer $ do
 iid <- adminRegistersAndActivateInvestor arnaudEMail
 adjustCashBalance_ (CashAdjustment iid 100001 (TxInvestorCash iid))

 userLogsInSuccesfully appServer arnaud userPassword
 goToAccountSummary
 cashBalanceIs "S$\n1,000.01"

 investorSuccessfullyWithdraws "500.00"

 cashBalanceIs "S$\n500.01"
 userLogsOut

Those tests only need a single URL pointing at an arbitrary instance of the system, which
makes it “easy” to run them during development outside of docker containers. It’s even
possible to run from the REPL which greatly simplifies their development,
Getting the docker-based infrastructure right and reliable in CI was a bit challenging:
There are quite a few moving parts and feedback cycle when working with containers is
slow. We ran into subtle issues with things like:

Differing versions of Firefox between local environment and container leading to
different behaviours, like how visibility of DOM elements is handled which may or
may not prevent click actions to complete
Timezone differences between various containers yielding different interpretations of
the same timestamp (official Selenium docker images are configured to use PST
whereas test driver container uses SGT,
Connections and timeouts issues between all the containers depending on open
ports and network state,
…

However, once in place and executing reliably, those tests really payoff in terms of how
much confidence we have in our system. We don’t aim to provide 100% feature coverage
of course and try to keep ETE tests small: The goal is to ensure our system’s main
features are still usable after each change.

We are using DigitalOcean’s cloud as our infrastructure provided: DO provides a much simpler
deployment and billing model than what provides AWS at the expense of some loss of flexibility.
They also provide a simple and consistent RESTful API which makes it very easy to automate
provisioning and manage VMs.

I wrote a Haskell client for DO called hdo which covers the basics of DO API: CRUD
operations on VMs and listing keys,

Deployment
Provisioning & Infrastructure

Provisioning is not automated as we do not need capacity adjustments on the go: When
we need a machine we simply run the script with appropriate credentials. Having a simple
way to provision VMs however has a nice side-effect: It makes it a no-brainer to fire copy
of any environment we use (Dev, Ci or Production) and configure it. This was particularly
useful for pairing sessions and staging deployment of sensitive features,
We also use AWS for a couple of services: S3 to backup data and host our static web site
and CloudFront to provide HTTPS endpoint to website.

Configuration of provisioned hosts is managed by propellor, a nice and very actively developed
Haskell tool. Configuration in propellor are written as Haskell code using a specialized “declarative”
embedded DSL describing properties of the target machine. Propellor’s model is the following:

Configuration code is tied to a git repository, which may be only local or shared,
When running ./propellor some.host, it automatically builds then commits local changes,
pushing them to remote repository if one is defined. All commits are expected to be
signed,
Then propellor connects through SSH to some.host and tries to clone itself there, either by
plain cloning from local code if some.host has never been configured, or by merging
missing commits if host has already been configured (this implies there is a copy of git
repository containing configuration code on each machine),
In case architectures are different, propellor needs to compile itself on the target host,
which might imply installing additional software (e.g. a Haskell compiler and needed
libraries…),
Finally, it runs remote binary which triggers verification and enforcement of the various
“properties” defined for this host. Propellor manages security, e.g. storing and deploying
authentication tokens, passwords, ssh keys…, in a way that seems quite clever to me: It
maintains a “store” containing sensitive data inside its git repository, encrypted with the
public keys of accredited “users”, alongside a keyring containing those keys. This store
can thus be hosted in a public repository, it is decrypted only upon deployment and
decryption requires the deployer to provide her key’s password.

Configuration Management

Here is an example configuration fragment. Each statement separated by & is a property that
propellor will try to validate. In practice this means that some system-level code is run to check if
the property is set and if not, to set it.

In practice, we did the following:

All known hosts configurations are defined in a configuration file (a simple text file
containing a Haskell data structure that can be Read) and tells, for each known
IP/hostname, what type of configuration should be deployed there and for production
hosts what is the tag for containers to be deployed there. As this information is versioned
and committed upon each deployment run, we always know which version of the system
is deployed on which machine by looking at this configuration,
We also defined a special clone configuration which allows us to deploy some version of
the system using cloned data from another system,
We ensure the application is part of the boot of the underlying VM: Early on we had some
surprises when our provider decided to reboot the VM and we found our application was
not available anymore…

Given all the components of the application are containerized the main thing we need to configure
on production hosts apart from basic user information and firewall rules is docker itself. Apart from
docker, we also configure our nginx frontend: The executable itself is a container but the
configuration is more dynamic and is part of the hosts deployment. In retrospect, we could
probably make use of pre-canned configurations deployed as data-only containers and set the
remaining bits as environment variables.

ciHost :: Property HasInfo
ciHost = propertyList "creating Continuous Integration server configuration" $ props
 & setDefaultLocale en_us_UTF_8
 & ntpWithTimezone "Asia/Singapore"
 & Git.installed
 & installLatestDocker
 & dockerComposeInstalled

Deployment to Production

Doing actual deployment of a new version of the system involves the following steps, all part of
propellor configuration:

We first check or create our data containers: Those are the containers which will be linked
with the services containers and will host the persisted event streams (see post on
architecture),
We then do a full backup of the data, just in case something goes wrong…
And finally rely on docker-compose to start all the containers. The docker-compose.yml
configuration file is actually generated by propellor from some high-level description of
the system which is stored in our hosts configuration file: We define for each deployable
service the needed version (docker repository tag) and use knowledge of the required
topology of services dependencies to generate the needed docker links, ports and names.
The net result is the something like the following. The dark boxes represent
services/processes while the lighter grayed boxes represent containers:

We were lucky enough to be able to start our system with few constraints which means we did not
have to go through the complexity of setting up a blue/green or rolling deployment and we can live
with deploying everything on a single machine, thus alleviating to use more sophisticated container
orchestration tools.

https://notepad.gasick.ru/uploads/images/gallery/2023-07/image-1689755305575.png

Remember our data is a simple persistent stream of events? This has some interesting
consequences in case we need to rollback a deployment:

If the version number has not been incremented, rollbacking simply means reverting the
containers’ tag to previous value and redeploying: Even if some events have been
recorded before we are notified of an issue implying rollback is needed, they should be
correctly interpreted by the system,
If the version has changed during deployment, then either we cannot rollback because
new events have been generated and stored and we must roll-forward ; or we can rollback
at the expense of losing data. This is usually not an option but still is possible if stored
events are “harmless” business-wise, like authentication events (logins/logouts): A user
will simply have to login again.

Monitoring is one the few areas in Capital Match system where we cheated on Haskell: I fell in love
with riemann and chose to use it to centralize log collections and monitoring of our system.

Riemann is packaged as a couple of containers: One for the server and one for the
dashboard, and deployed on a dedicated (small) VM. Both server and dashboard
configuration are managed by propellor and versioned,
As part of the deployment of the various VMs, we setup and configure stunnels containers
which allow encrypted traffic between monitored hosts and monitoring server: On the
monitoring host there is a stunnel server that redirects inbound connections to running
docker containers, whereas on monitored hosts the stunnel server is referenced by clients
and encapsulate traffic to remote monitoring host transparently,
Riemann is fed 2 types of events:

System level events which are produced by a collectd installed on each deployed
host,
Applicative level events which are produced by the deployed services as part of our
logging system,

Rollbacks

Monitoring

Applicative events are quite simple at the moment, mostly up/down status and a couple of
metrics on HTTP requests and disk storage latency and throughput,
There is a simple riemann dashboard that presents those collected events in a synoptic
way,
It is very easy to extend riemann with new clients or external connectors: At one point I
considered using LogMatic to host some business-level dashboards and it took me a few
hours to build a riemann plugin to send events to Logmatic’s API,
Riemann’s event model is very simple and flexible hence it is an ideal candidate for being
a one-stop sink for all your events: Dump all events to riemann using a single connector in
the application and configure riemann server to massage the events and feed specialized
clients,
There a couple of alerts configured in Riemann that notifies slack when disks fill up or
hosts are down. We also have set up external web monitoring of both application and web
site using Check My Website.

Docker has its shortcomings, is far from being perfect and is becoming bloated like all
enterprise software, but packaging all parts of a system as containers is a good thing. It
allowed us to grow a flexible yet consistent system made of a lot of moving parts with
diverse technological requirements. Containers are obviously great for development,
providing a simple and efficient way of packaging complex tools and environments in an
easy to use way. But they are also great for operations: They are more flexible than VMs,
they can be as secure if one takes care to trim them down to the bare minimum, and
pretty compact, they give you great flexibility in terms of deployment,
I still don’t have much experience, apart from small experiments, on how to deploy docker
over multiple machines. However the ecosystem of tools for managing more complex
deployments is growing and maturing fast and beside I have a couple ideas on how to do
it in a “simple way” using OpenVSwitch,

Discussion
Some takeaways

Docker containers should do one and only one thing and they should be kept minimal:
Don’t use default fat images and try to trim them down to the bare minimum (e.g.
executable + support libraries + configuration files),
I did not pay enough attention to build time, or more precisely I did not pay attention
often enough,
Automating as much as possible of the whole system is an investment: If you are going to
throw it away in a few months, don’t do it ; but if you are going to live with it for years, do
it now because later it will be too late to really payoff,
Having automated ETE tests is a great thing but they should be kept to a minimum:
Always consider the relative size of the layers in the pyramid and do not try to cover bugs
or “deviant” behaviour at the level of ETE tests,
Monitoring must be baked into the system from the onset, even if with simple solutions
and basic alerts. It is then easy to extend when business starts to understand they could
leverage this information,
propellor is a great tool for provisioning. I tried things like Chef or Puppet before and the
comfort of working in Haskell and not having to delve into the intricacies of complex
“recipes” or custom DSL is invaluable. Propellor is simple and suits my requirements
pretty well, however there are a couple of pain points I would like to find some time to
alleviate:

Tying deployment runs to git commits is really a good thing but this should be more
customizable: I would like to keep deployment code in the same repository than
production code but this currently would yield a lot of identically named commits
and pollute the log of the repository,
Propellor needs to be built on the target machine as it is an executable: It can upload
itself when architecture matches hence it would be better to run deployment inside
a dedicated container that match the target OS in order to remove the need to
install GHC toolchain,
It is hard to write and maintain idempotent properties: It would be simpler to be able
to run propellor only once on a machine, forcing immutable infrastructure.

Conclusion

Growing such a system was (and still is) a time-consuming and complex task, especially given our
choice of technology which is not exactly mainstream. One might get the feeling we kept
reinventing wheels and discovering problems that were already solved: After all, had we chosen to
develop our system using PHP, Rails, Node.js or even Java we could have benefited from a huge
ecosystem of tools and services to build, deploy and manage it. Here are some benefits I see from
this “full-stack” approach:

We know how our system works down to the system level, which allows us to take
informed decisions on every part of it while understanding the global picture. The
knowledge gained in the process of growing this system has a value in and of itself but is
also an asset for the future: The better we know how the system works, the faster we can
adpat it to changing requirements and constantly evolving environment,
It has been definitely frustrating at time but immensely fun to experiment, learn, tweak,
fail or succeed, with all those moving parts,
It forces us to really think in terms of a single unified system: Being in charge of the whole
lifecycle of your code, from writing the first line to deployment to production to retirement
yields a sense of responsibility one does not gain from working in silos and throwing some
bunch of code over the wall to ops team. This is truly DevOps in the way Patrick Debois
initially coined the term, as a kind of system-thinking process and genuinely drives you to
the You build it, you run it culture,
Managing operations, even at a small scale, is demanding, hence the need to think about
automation, monitoring and short deployment cycles as early as possible in order to
minimize the need for manual interventions. This completes a series of post I have written
over the past few months, describing my experience building Capital Match platform:

Anatomy of a Haskell-based Application described the overall design and architecture of the
application, Using agile in a startup detailed our development process, Haskell-based Development
Environment focused on the build system and development environment.

Revision #1
Created 19 July 2023 08:23:39 by gasick
Updated 19 July 2023 08:42:11 by gasick

