Ecnu Bbl BUANTE 4TO-TO HEOBbIYHOE, MPOCTO coobwmnTe MHe.

Docker/docker-
compose

Code-server

Selfhosted Sentry

GlusterFS Setup
e Gocd

Install Fedora 37 or earlier on Windows Subsystem for Linux (WSL)

Minio cluster s3fs

Docker registry mirror

Code-server

code-server

B35TO OTClOAa:
https://hub.docker.com/r/codercom/code-server

docker-compose.yml - MO>XXHO MCMOJIb30BaTb WM build nnm image

version: "2.1"
services:
code-server:
#image: codercom/code-server:latest
build: .
container_name: code-server
#command: export PATH=$HOME/project/ghc/.cabal/bin:$PATH
user: 1000:1000
volumes:
- ./project:/home/coder/project
- ./.stack:/home/coder/.stack
- ./Jconfig.yaml:/home/coder/.config/code-server/config.yaml
ports:
- 8080:8080
- 8000:8000

Dockerfile - TyT Mo>xHO n1nbo ncnonb3oBaTb roToBbIM 06pa3 N1Mbo 4o6aBUTL B HEMrO BCE YTO HYXKHO,

Ha CTaguu pa3BopaynBaHUA
FROM codercom/code-server:latest

RUN sudo apt update && sudo apt install -y ghc libopenblas-dev
RUN curl -sSL https://get.haskellstack.org/ | sh

config.yaml - HacTpoinku code-server

bind-addr: 127.0.0.1:8080
auth: password
password: HY>KHbINMAPOJ1b

cert: false

Selfhosted Sentry

MepBbi 3aMNycK:
docker-compose run sentry sentry upgrade
dokcer-compose.yml

version: '2'

services:
redis:

image: redis

postgres:
image: postgres
env file:
- .env
volumes:

- ./pgdb:/var/lib/postgresql/data

sentry:
image: sentry:8.10.0
links:
- redis
- postgres
ports:
- 8010:9000
env_file:

- .env

cron:
image: sentry:8.10.0
links:
- redis

- postgres

command: "sentry run cron
env_file:

- .env

worker:
image: sentry:8.10.0
links:
- redis
- postgres
command: "sentry run worker"
env file:

- .env

.env

POSTGRES_USER=sentryuser
POSTGRES_PASSWORD=!!!SETPASSWORD!!!
POSTGRES_DB=sentry
SENTRY_SECRET_KEY=!!SETSECRETKEY!!!
SENTRY_POSTGRES_HOST=postgres
SENTRY_DB_USER=sentryuser
SENTRY_DB_PASSWORD=!!!SETPASSWORD!!!
SENTRY_REDIS_HOST=redis
SENTRY_EMAIL_HOST=smtp.yandex.ru
SENTRY_EMAIL_PORT=25
SENTRY_EMAIL_PASSWORD=!!ISETPASSWORD!!!
SENTRY_EMAIL_USER=!!!SETUSER!!
SENTRY_EMAIL_USE_TLS=true
SENTRY_SERVER_EMAIL=!!!SETUSERMAIL!!!

GlusterFS Setup

TpeboBaHusa GlusterFS nogaepxmBaeT TONbKO 64bit cucTtemsl, NnoaTomy ybegntech, 4HTO XOCTOBas

MalLUMHa MoXXeT 3anycTuTb GlusterFS n nobble apyrne mMalmnHbl UCNObL3YIOT ToXe 64bit cnctemsi.
ITa NHCTpyKuma nogoxoant ana Ubuntu 22.04 jammy

NHCTpyKUMA 3anycTuTe cieaylolimne KoMmaHabl Ha BCEX CUCTeMax, KoTopble ByayT

MCrnob30oBaTbCAd AJiA pacnpeﬂ,eneHHoM q)a|7|n030|7| CNCTEMBbI.

[1lobaBneHne XoCToB B
/etc/hosts

Mbl XOTUM y6ED,I/ITbCﬂ 4YTO Halla MallKHa MOXeT obuwaTbCcs aopyr c Apyrom rno mnMmeHam, 3To MO>XXHO

caoenaTb OTPeOaKTMPOBaB cieaylwmm obpasom:
PenakTupyem /etc/hosts
sudo nano /etc/hosts

HobaBbTe B HEro Balun agpeca Kotopble ByayT NCMONb30BaTbCA MalUMHAMN, HUXKE NpuBeaeH
npumep oas Moen MalwmnHbl GlusterFS, HO Takmne 3anncu Hy>kHO byaeT 0o6aBUTbL Ha BCEX MaLUUHaX

roe bypnet ncnonb3oBaTtbcsa GlusterFS

127.0.0.1 localhost
127.0.1.1 elzim

192.168.68.109 elzim
192.168.68.105 pi4lab01
192.168.68.114 pi4lab02

YcTtaHoBKa GlusterFS

HacTtpoum GlusterFS peno3ntopuin. Ha Bpema HanncaHusa ctatbh GlusterFS-10 nocnegHunn penus.
sudo add-apt-repository ppa:gluster/glusterfs-10

3anyckaeMm obHOBIEHNE PEno3nTopurEB.
sudo apt update
sudo apt install glusterfs-server -y

3anyckaeM un BkatovaeMm GlusterFS

sudo systemctl start glusterd

sudo systemctl enable glusterd

CBsI3bIBaeM HOAbl DTO KOMaHAa 3anyckKaeTCqa TOJIbKO Ha XOCTOBOW MalUuHE.

Mepen 3anyCckKOM KOMaHObl CBSA3bIBaHUSA, ybeanTech, YTO Bbl 3anyckaeTe KOMaHAbl OT sudo.
sudo -s

Cnepnytoulasi KomaHaa 6yneT cBa3biBaTb BCe HoAbl B knacTep GlusterFS, oH ncnonb3yeT nmeHa

yKa3aHHble B hosts, ybeaunTecb, 4TO Bbl BHECIN HEOOXOAMMbIE N3MEHEHUSA B CKPUMT.

gluster peer probe pi4lab01;
gluster peer probe pi4lab02;

3aI'IyCTI/ITe KOMaHObl KOTOPbIE MOKa>XyT CBA3aHHbIE XOCTbI B KJ1aCTEP.

sudo gluster pool list

Co3pnaHue Gluster pasnoena

llaBainTe co3gaanm ONPPEKTOPUIO, KOTopas byaeT Ucrnosib3oBaThCs B KavyecTBe pasgena GlusterFS

“ KoMaHOa HMXXe co3paeTcda Ha Bcex Hopax Kiactepa. Note: You can name

"volumes" to anything you like.

sudo mkdir -p /gluster/volumes

Tenepb Mbl MOXXEM CO3[aTb pa3fes Ha BCeX Hodax KnacTepa. KomaHaa BbIMNOJIHAETCSA Ha XocTe.

sudo gluster volume create staging-gfs replica 3 elzim:/gluster/volumes pi4lab01:/gluster/volumes

pi4lab02:/gluster/volumes force

3anycTuM pa3sfen 3anycTuB KOMaHAy Huxe

sudo gluster volume start staging-gfs

YT106bI YOEANTLCS, YTO pa3fnes aBTOMAaTUYECKN NMPUMOHTUPYETCS NpK Nepesarpyse uin apyrux

obcToATEeNnbCTBAX, HY>XHO BbIMNMOJIHUTbL Ccinefdytouine warm Ha Bcex MmallnHax:

MNepekntoymTecb Ha cynep nosb3oBaTens:

sudo -s

HOobaBpbTe cnenytoume cTpokn B /etc/fstab dann ncnonb3sys komaHay

echo 'localhost:/staging-gfs /mnt glusterfs defaults, netdev,backupvolfile-server=Ilocalhost 0 0' >> /etc/fstab

MpuMoHTUpYTe pasgen GlusterFS K /mnt AMPeKTOPUM C MOMOLLbIO KOMaHAbI:

mount.glusterfs localhost:/staging-gfs /mnt

YcTaHoBMTE Brlafenbua /mnt oMppekTopun 1 ero cogepxmmoro root:docker ncnonb3sys komMaHay:

chown -R root:docker /mnt

BoimonTe 13 pyTa

exit

YT106bI NPOBEPUTH, 4TO GlusterFS pa3gen ycnewHo CMOHTUPOBAH, 3anNyCcTUTE KOMaHAy:

df -h
localhost:/staging-gfs 15G 4.8G 9.1G 35% /mnt

®dannbl co3gaHHbIe B nanke /mnt 6y,uyT Tenepb 0T06pa)KaTbC$| BO BCeX MalWlMHaX rae sanyueH

GlusterFsS.

Gocd

version: "3"

services:

server:
image: gocd/gocd-server:v23.3.0
ports:
- "8153:8153"
- "8154:8154"
volumes:
- ./data:/godata

- ./data/home:/home/go

./scripts/server:/docker-entrypoint.d
- ./scripts/shared:/shared
environment:
- GO_SERVER_SYSTEM_PROPERTIES=-Dcruise.material.update.interval=2000 -
Dmaterial.update.idle.interval=2000
depends_on:

- "gitserver"

agent:

image: gocd/gocd-agent-docker-dind:v23.3.0
environment:

- GO_SERVER_URL=http://server:8153/go

- AGENT_AUTO_REGISTER_KEY=agent-autoregister-key
volumes:

- ./scripts/agent:/docker-entrypoint.d

- ./scripts/shared:/shared

- /var/run/docker.sock:/var/run/docker.sock
depends_on:

- "server"

Install Fedora 37 or earlier
on Windows Subsystem for
Linux (WSL)

Using Windows Subsystem for Linux (WSL), we have a choice of Linux distributions available in the

Windows Store, such as Ubuntu, Kali, Debian, etc.

In addition to these, with WSL 2, installing custom distributions is fairly straightforward, even if

they are not in the Windows Store:

e find a rootfs for the distro

e install with wsl --import in Windows Powershell or Command Prompt Lately | rely on
Fedora in WSL 2, and have been thoroughly pleased with that distribution. This article
details the steps | use to get up and running with Fedora on WSL. By the way, if you prefer
a nice out-of-box experience, take a look at the fine work by Whitewater Foundry with

their Fedora Remix for WSL. But if you see "some assembly required" as an enticing

invitation, read on.

“ Already have a previous version of Fedora on WSL 2, and just want to upgrade to

the latest? | documented the steps involved in another article; feel free to take a

look.

Prerequisite: WSL 2

Please note that these steps
require WSL 2 (not version 1).

“ To run WSL 2, Windows version 1903 or higher is needed, with Build 18362 or
higher. Most likely, you have a much later version than this already. To tell what
version you are running, run winver in Powershell or CMD, or just type Win key
and R (E-r) to open the Run dialog and then enter winver. Hopefully you will see
something like "Version 21H2. OS Build 19044.1503". If on Windows 11, you
needn't worry at all anyway, but the version should be something like "Version

21H2. OS Build 22000.1165".

To check if you are running WSL 2, try this command:
wsl --set-default-version 2
This will set the default version to WSL 2, or fail if you are still on the first version.

If it does neither and instead offers installation instructions, this may be your first time using WSL

on this system.

Microsoft offers helpful installation instructions, including step-by-step instructions on how to

upgrade to WSL 2.

In short, if you are comfortable installing another Linux distribution, running wsl --install will install
the default latest Ubuntu, or you can pick from a list by using wsl -l -0 then installing one with wsl --

install -d Debian or, if not Debian, whichever distribution you would like.

If you are on an older version of Windows 10 or using WSL version 1, then the following Powershell

command should get you to where you need (a reboot will likely be necessary).

Enable-WindowsOptionalFeature -Online -FeatureName Microsoft-Windows-Subsystem-

Linux,VirtualMachinePlatform -All

Most likely, the wsl command will then instruct you to install a new kernel, so proceed to

https://aka.ms/wsl2kernel and follow the instructions there.

Again, see Microsoft's instructions for a current and detailed version.

Obtain a rootfs image of
Fedora

We first need a rootfs (the base filesystem for the Linux distro in question, in this case Fedora).

There a few ways to get this.

Obtain rootfs from Fedora
Container Base

The rootfs embedded in the Fedora Container Base project seems to work well, and is my preferred
method, as it offers a lot of flexibility. | start with the most recent stable version of Fedora that
auto-built successfully. If you want to be bleeding edge, you can download the latest Rawhide
image that built successfully, but | am using the latest Fedora 37 for now. The "State" column

indicates build success. Pick the latest with a green checkmark.
Find the right "xz" file for your platform (likely x86_64). Such as:

e Fedora 37, built on October 29, 2022.
e Fedora 36, built on October 29, 2022.
e Fedora 35 built on October 29, 2022.

Unpack the Fedora-Container-Base-*.tar.xz file in your preferred manner. You might try 7-zip for
this, extracting the .tar file, then extracting the contents of the .tar file. This, however, is not your

rootfs. Further work is needed.

Once unpacked you will see a folder with a long hexadecimal name. Within that folder, there should
be a layer.tar file. This is your rootfs. Copy the layer.tar file to a logical location, such as your

Downloads folder. You may even want to rename it to something like fedora-33-rootfs.tar.

Alternative: download rootfs from
docker-brew-fedora project

The docker-brew-fedora project imports "the official Fedora Docker Base Images built in Fedora Koji
(Fedora's Build System) so that they may be submitted to the official-images repository for the

Docker Hub."

To download, first pick your desired Fedora version from the active branches. For example, you
might choose Fedora 37 and there find a file with a name like fedora-37-x86_64.tar.xz. Or use
Fedora 36 and look for fedora-36-x86_64.tar.xz. Or go for Fedora 35 and locate fedora-35-
x86_64.tar.xz. Download that file.

Unpack the fedora-37-x86_64.tar.xz file in your preferred manner. You might try 7-zip for this,

extracting the .tar file, then, if desired, renaming it to something like fedora-36-rootfs.tar.

Another rootfs alternative: use
docker or podman and export

While this requires an extra tool, if you already have docker or podman available, then you can pull
the Fedora image of your choosing and export the rootfs. In the following, if you have a Linux distro

with podman available, you can substitute podman in place of docker.

docker run --name fedora37 fedora:37

docker export -o fedora-37-rootfs.tar fedora37

First we create the container, name it "fedora37", then export the rootfs as "fedora-37-rootfs.tar".

Afterward, you can certainly docker rm fedora37 to clean up.

You may be interested in my articles for configuring podman on WSL, or setting up Docker on WSL.

Make a folder for your WSL
distro.

Once we have the rootfs, we can prepare to import it.

| like to use wsl in my home directory, so in this case | create that folder and a fedora folder within

it. In Powershell, that's:

mkdir $HOME\wsl\fedora

Install a new WSL Fedora distro

In Powershell, assuming you want to name the distro "fedora" and the folder is $HOME\wslI\fedora

and the rootfs is in Downloads, named "fedora-37-rootfs.tar":

wsl --import fedora $HOME\wsl\fedora $HOME\Downloads\fedora-37-rootfs.tar

View installed distros

If this is the only WSL distro you now have, executing wsl -I should look something like this:

PS C:\Users\me> wsl -|
Windows Subsystem for Linux Distributions:

fedora (Default)

Launch Fedora as root

wsl -d fedora
Or, if Fedora is the default, simply wsl should result in a BASH prompt.

If you have multiple distros installed, and want Fedora to be set as the default, something like this

should work:

wsl -s fedora

Ensure DNS is functioning (skip
this section if network functionality
IS good)

DNS in WSL is interesting. By default, WSL will set the DNS server automatically, dynamically
configuring /etc/resolv.conf. If your dns is resolving fine (does sudo dnf upgrade work for you?) then

you can skip to the next section. It seems that it just works for most people.

For me, however, the dynamic /etc/resolv.conf has not worked consistently. | need to turn it off and

configure resolv.conf manually.

Conveniently, WSL provides a means in /etc/wsl.conf to set some configuration settings specific to

WSL.

In order for DNS to work, we will create our own resolv.conf, but first we create a new wsl.conf file

and disable auto-generation of resolv.conf:

echo -e "[network]\ngenerateResolvConf = false" > /etc/wsl.conf
Now exit WSL, then terminate it with

wsl -t fedora

Then enter it again with

wsl -d fedora

Now we can persist our custom DNS configuration. First, unlink /etc/resolv.conf. This covers cases
in which /etc/resolv.conf is linked to systemd-resolved or resolvconf generated files. Then create a

new /etc/resolv.conf with the nameserver(s) of your choice:

unlink /etc/resolv.conf

echo nameserver 1.1.1.1 > /etc/resolv.conf
Why not test network settings now with a system upgrade:
dnf upgrade

If repositories are synced, you have success!

Missing the mount
command?

If, at first entry to your new Fedora instance, you are greeted with An error occurred mounting one
of your file systems, then that is a sign you are missing the util-linux package, which includes
mount as well as other essential commands. Depending on the rootfs you installed, you may not

receive any error, in which case you can proceed to the next section.

But if you do need mount, install util-linux (or, if you are going minimalist, just install util-linux-

core).
dnf install -y util-linux
Then exit, and terminate your fedora instance (this, in effect, causes a restart):

wsl -t fedora

Launch Fedora as an unprivileged
user

Just sayin': root should never be your default user. Let's create a normal user.

We are going to need passwd for this, and we might as well get the cracklib dicts for password

checking, too. Install both, once you have launched Fedora:
dnf install -y passwd cracklib-dicts

Now, create a new user; while we are at it, let's add them to the wheel group so the user can sudo

(don't forget to replace "myusername" with something that makes sense for you):
useradd -G wheel myusername

Then create a password for that user: passwd myusername Now, exit WSL or launch a new

Powershell window, then re-launch WSL with the new username:
wsl -d fedora -u myusername
Success?

$ whoami

myusername
Does sudo work?
sudo cat /etc/shadow

If you see the list of users, including, toward the bottom, the one you recently added, then all is

well!

Set the default user

It would be nice to enter your Fedora instance as the user you just created, rather than as root.

To enable this, assuming you have Windows build 18980 or later: simply add a user section to

/etc/wsl.conf.

Something like this will work well if you do not already have that file, or a [user] section in it:
printf "\n[user]\ndefault = myusername\n" | sudo tee -a /etc/wsl.conf

Then exit, and terminate your fedora instance, so that it starts fresh next time.
wsl -t fedora

Launch WSL again, without specifying a user, and you should be that user, not root.

If that succeeded, then proceed to the next section.

But if on a version of Windows before build 18980, then you will instead need to edit the registry to

set a default user.

In Fedora, the user you created likely has a user id of 1000, but you can check with id -u.

Remember that number.

Back in Powershell you can set the default user by editing the Windows registry, changing "fedora"

and "1000" to what you named your WSL distro and the user id, respectively:
Get-ltemProperty Registry::HKEY _CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Lxss*\

DistributionName | Where-Object -Property DistributionName -eq fedora | Set-ltemProperty -Name DefaultUid -
Value 1000

Fine tuning

If you do container work, especially in userspace, you will likely want to reinstall shadow-utils, in

order to fix sticky bits that weren't set properly in the rootfs:

sudo dnf reinstall -y shadow-utils

If you like to ping servers to see if they are up, then these two steps may be necessary:

sudo dnf install -y procps-ng iputils

sudo sysctl -w net.ipv4.ping_group_range="0 2000"

The second one allows group IDs all the through 2000 to be able to ping. You can check group IDs
with getent group or see your primary group ID with id -g and make sure it is included in the range

above.

To make the above permanent, however, it is necessary to create or alter the $HOME.wslconfig file

in Windows, not Linux. Placing the following in that file will allow ping to work even after restarts:

[wsl2]

kernelCommandLine = sysctl.net.ipv4.ping_group_range=\"0 2000\"

You may also find other commands you are used to are missing from the sparse rootfs we installed.

You may want to install iproute, findutils, ncurses, and others, like so:
sudo dnf -y install iproute findutils ncurses

While the included vi is a useful text editor, you will likely want one that is either more robust or
has a user interface that suits you. Good options include vim, micro, or nano. Pick one and install it

with something like:
sudo dnf install -y micro

From here, you can proceed to install packages, edit configurations, and customize your new distro

to your heart's content!

A few good man pages

You want the docs? You can't handle the docs!

But if you can handle them, and can handle the extra storage space they will occupy, then you
likely want man pages. Thanks to Martin Hinze for his good suggestions on how best to add man

page functionality. This is an enhancement, rather than baked in, because we obtained a slimmed-

down rootfs earlier.

First, ensure the nodocs option is not set in /etc/dnf/dnf.conf. You may edit out the tsflags=nodocs

line yourself, or use the following:

grep -v nodocs /etc/dnf/dnf.conf | sudo tee /etc/dnf/dnf.conf
Then install man and man-pages:

sudo dnf install -y man man-pages

This will ensure you get man pages on every future dnf install; however, to add them in
retroactively, you will want to dnf reinstall any package for which you want man pages. For
instance, man dnf will yield nothing now. But try it again after sudo dnf reinstall -y dnf and you

should have good results.
To reinstall all installed packages, try the following:

for pkg in $(dnf repoquery --installed --qf "%{name}"); do sudo dnf reinstall -qy $pkg; done

Don't repeat yourself

Once you have a pristine base system the way you want it, why not export a tarball that you can
import later. | mean, | am honored if you want to read this article again and follow it step by step.

But if you want life to be a little easier, you might try the following.
First, clean up downloaded packages, etc. within Fedora:

sudo dnf clean all
Then, exit WSL and export the whole installation to a tarball:

wsl --export fedora $HOME\Downloads\fedora-wsl.tar

You may want a different folder than Downloads; specify the location you desire.

Depending on what packages you installed, it may be as small as a quarter GB. You could gzip it if
you want the storage size to be even smaller. Next time you want to start fresh, you can do

something like this:

mkdir $HOME\wsl\freshfedora
wsl --import freshfedora $HOME\wsl\freshfedora $HOME\Downloads\fedora-wsl.tar

Keep upgrading
Even if you have a prerelease, there should be no need to reinstall. Just keep upgrading; the
process is pretty seamless:

sudo dnf upgrade

For instance, if you decided to use Fedora 37 (you adventurer, you!), upgrade as often as you like
with the above command, and you will eventually (by November of 2022, presumably) be at

release.

Minio cluster s3fs

#compose.yaml

version: '3.8'

services:
miniol:
image: quay.io/minio/minio:latest
hostname: miniol
volumes:
- ./miniol-data:/data
environment:
MINIO_ROOT_USER: minioadmin
MINIO_ROOT_PASSWORD: minioadmin

command: server http://minio{1...3}/data --console-address ":9001"

minio2:

image: quay.io/minio/minio:latest

hostname: minio2

volumes:
- ./minio2-data:/data

environment:
MINIO_ROOT_USER: minioadmin
MINIO_ROOT_PASSWORD: minioadmin

command: server http://minio{1...3}/data --console-address ":9001"

minio3:

image: quay.io/minio/minio:latest

hostname: minio3

volumes:
- ./minio3-data:/data

environment:
MINIO_ROOT_USER: minioadmin
MINIO_ROOT_PASSWORD: minioadmin

command: server http://minio{1...3}/data --console-address ":9001"

nginx:

image: nginx:alpine
ports:

- "9000:9000" # MinlO API

- "9001:9001" # MinlO Console (Ul)
volumes:

- ./nginx.conf:/etc/nginx/nginx.conf
depends_on:

- miniol

- minio2

- minio3

#nginx.conf
events {

worker_connections 1024;

http {
upstream minio_servers {
server minio1:9000;
server minio2:9000;

server minio3:9000;

upstream console_servers {
server miniol:9001;
server minio2:9001;

server minio3:9001;

server {
listen 9000;
location / {
proxy_pass http://minio_servers;

proxy_set header Host $host;

server {
listen 9001;

location / {

proxy_pass http://console_servers;

proxy_set header Host $host;

ncnosb3oBaTb S3fs

sudo yum install s3fs

echo "minioadmin:minioadmin" > ~/.passwd-minio

chmod 600 ~/.passwd-minio

mkdir /mnt/minio

sudo s3fs test /mnt/minio -o passwd_file=/home/elama/.passwd-

minio,use_path_request_style,url=http://localhost:9000,umask=0007,allow_other

Docker reqgistry mirror

mkdir -p ./containers-registry-proxy/cache

mkdir -p ./containers-registry-proxy/certs

podman run --rm --detach --name containers-registry-proxy \
--publish 0.0.0.0:3128:3128 \
--env ENABLE_MANIFEST_CACHE=true \
--env REGISTRIES="quay.io gcr.io k8s.gcr.io ghcr.io mcr.microsoft.com registry.gitlab.com" \
--volume "$(pwd)/containers-registry-proxy/cache":/docker_mirror_cache \
--volume "$(pwd)/containers-registry-proxy/certs":/ca \

rpardini/docker-registry-proxy:0.6.4

e docker.io

quay.io

gcr.io

k8s.gcr.io

ghcr.io

mcr.microsoft.com

registry.gitlab.com

